-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathimage_processing.js
133 lines (112 loc) · 4.61 KB
/
image_processing.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/**** Start of imports. If edited, may not auto-convert in the playground. ****/
var tni = ee.FeatureCollection("users/nkeikon/myanmar_sr/TNI");
/***** End of imports. If edited, may not auto-convert in the playground. *****/
/* Nomura et al. 2019,
'Oil palm concessions in southern Myanmar consist mostly of unconverted forest'
Corresponding author: keiko.nomura@ed.ac.uk
*/
var roi = tni;
var startDate = '2018-11-01';
var endDate = '2019-01-31';
Map.centerObject(tni, 7);
//mask clouds using the Sentinel-2 QA band
function maskS2clouds(img) {
var qa = img.select('QA60').int16();
// Bits 10 and 11 are clouds and cirrus, respectively.
var cloudBitMask = Math.pow(2, 10);
var cirrusBitMask = Math.pow(2, 11);
// Both flags should be set to zero, indicating clear conditions.
var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and(
qa.bitwiseAnd(cirrusBitMask).eq(0));
// Return the masked and scaled data.
return img.updateMask(mask);
}
// Compute cloudscore by selecting the least-cloudy pixel from the collection
// Originally written by Matt Hancher and adapted for Sentinel-2 by Ian Housman
// Bands, thresholds and other parameters were set by the author
var cloudThresh = 1; //Ranges from 1-100
var dilatePixels = 0; //Pixels to dilate around clouds
var contractPixels = 0; //Pixels to reduce cloud mask and dark shadows by to reduce inclusion of single-pixel comission errors
var thresh_blue = [0.1, 0.4];
var thresh_aerosol = [0.1, 0.45];
var rescale = function(img, exp, thresholds) {
return img.expression(exp, {
img: img
})
.subtract(thresholds[0]).divide(thresholds[1] - thresholds[0]);
};
function sentinelCloudScore(img) {
var score = ee.Image(1.0);
score = score.min(rescale(img, 'img.blue', thresh_blue));
score = score.min(rescale(img, 'img.aerosol + img.cirrus', [0.15, 0.2]));
score = score.min(rescale(img, 'img.aerosol', thresh_aerosol));
var ndmi = img.normalizedDifference(['nir', 'swir1']);
score = score.min(rescale(ndmi, 'img', [-0.1, 0.1]));
score = score.multiply(100).byte();
return img.addBands(score.rename('cloudScore'));
}
function bustClouds(img) {
img = sentinelCloudScore(img);
img = img.updateMask(img.select(['cloudScore']).gt(cloudThresh).focal_min(contractPixels).focal_max(dilatePixels).not());
return img;
}
//S2 images
var collection = ee.ImageCollection('COPERNICUS/S2')
.filterBounds(roi)
.filterDate(startDate, endDate)
.map(function(img) {
var t = img.select(['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B9', 'B10', 'B11', 'B12']).divide(10000); //Rescale to 0-1
t = t.addBands(img.select(['QA60']));
var out = t.copyProperties(img).copyProperties(img, ['system:time_start']);
return out;
})
.select(['QA60', 'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B9', 'B10', 'B11', 'B12'], ['QA60', 'aerosol', 'blue', 'green', 'red', 'red1', 'red2', 'red3', 'nir', 'red4', 'h2o', 'cirrus', 'swir1', 'swir2']);
var composite = collection.reduce(ee.Reducer.intervalMean(40, 60));
Map.addLayer(composite.clip(roi), {
bands: ['red_mean', 'green_mean', 'blue_mean'],
min: 0,
max: 0.3
}, 'before masking', false);
var s2QA = collection.map(maskS2clouds);
var s2QAmean = s2QA.reduce(ee.Reducer.intervalMean(40, 60));
var s2QAimage = s2QAmean.clip(tni);
Map.addLayer(s2QAimage, {
bands: ['red_mean', 'green_mean', 'blue_mean'],
min: 0,
max: 0.3
}, 'using QA clouds', false);
var cloudMaskedimage = collection.map(bustClouds);
var cloudMaskedmean = cloudMaskedimage.reduce(ee.Reducer.intervalMean(40, 60));
Map.addLayer(cloudMaskedmean.clip(tni), {
bands: ['red_mean', 'green_mean', 'blue_mean'],
min: 0,
max: 0.3
}, 'using S2 cloudscore', false);
var cloudQA = s2QA.map(bustClouds);
var allmean = cloudQA.reduce(ee.Reducer.intervalMean(40, 60));
var all = allmean.clip(roi);
Map.addLayer(all, {
bands: ['red_mean', 'green_mean', 'blue_mean'],
min: 0,
max: 0.3
}, 'using QA and S2 cloudscore (final image)');
// Choose image for classification
var s2bands = ['aerosol_mean', 'blue_mean', 'green_mean', 'red_mean', 'red1_mean', 'red2_mean', 'red3_mean', 'nir_mean', 'red4_mean', 'h2o_mean', 'cirrus_mean', 'swir1_mean', 'swir2_mean'];
var s2TNI = all.select(s2bands);
Export.image.toAsset({
image: s2TNI,
description: 's2image_asset',
assetId: 's2image',
region: roi.geometry().bounds(),
crs: 'EPSG:4326',
scale: 10,
maxPixels: 1e13
});
Export.image.toDrive({
image: s2TNI,
description: 's2image_drive',
region: roi.geometry().bounds(),
crs: 'EPSG:4326',
scale: 10,
maxPixels: 1e13
});