-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
executable file
·196 lines (144 loc) · 6.66 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python
# encoding: utf-8
import argparse
from tqdm import tqdm
import torch
from os import path
import figet
from figet.Constants import *
from figet.utils import process_line
DS = "distant_supervision"
CR = "crowd"
CR_TRAIN = f"{CR}/train_m.json"
CR_DEV = f"{CR}/dev.json"
CR_TEST = f"{CR}/test.json"
EL_TRAIN = f"{DS}/el_train.json"
EL_DEV = f"{DS}/el_dev.json"
HW_TRAIN = f"{DS}/headword_train.json"
HW_DEV = f"{DS}/headword_dev.json"
log = figet.utils.get_logging()
def make_vocabs(args):
"""
It creates a Dict for the words on the whole dataset, and the types
"""
token_vocab = figet.TokenDict(lower=False)
type_vocab = figet.TypeDict()
all_files = [path.join(args.dataset, fpath) for fpath in [EL_TRAIN, HW_TRAIN, CR_TRAIN, CR_DEV, CR_TEST]]
bar = tqdm(desc="make_vocabs", total=figet.utils.wc(all_files))
for data_file in all_files:
for line in open(data_file, buffering=BUFFER_SIZE):
bar.update()
fields, tokens = process_line(line)
for token in tokens:
token_vocab.add(token)
for mention_type in fields[TYPE]:
type_vocab.add(mention_type)
bar.close()
char_vocab = figet.Dict()
char_vocab.add(UNK_WORD)
for char in CHARS:
char_vocab.add(char)
log.info(f"Created vocabs:\n\t#token: {token_vocab.size()}\n\t#type: {type_vocab.size()}\n"
f"\t#chars: {char_vocab.size()}")
return {TOKEN_VOCAB: token_vocab, TYPE_VOCAB: type_vocab, CHAR_VOCAB: char_vocab}
def make_word2vec(filepath, tokenDict):
word2vec = figet.Word2Vec()
log.info("Start loading pretrained word vecs")
for line in tqdm(open(filepath), total=figet.utils.wc(filepath)):
fields = line.strip().split()
token = fields[0]
try:
vec = list(map(float, fields[1:]))
except ValueError:
continue
word2vec.add(token, torch.Tensor(vec))
ret = []
oov = 0
# PAD word (index 0) is a vector full of zeros
ret.append(torch.zeros(word2vec.get_unk_vector().size()))
tokenDict.label2wordvec_idx[figet.Constants.PAD_WORD] = 0
for idx in range(1, tokenDict.size()):
token = tokenDict.idx2label[idx]
if token in word2vec:
vec = word2vec.get_vec(token)
tokenDict.label2wordvec_idx[token] = len(ret)
ret.append(vec)
else:
oov += 1
ret = torch.stack(ret) # creates a "matrix" of token.size() x embed_dim
log.info("* OOV count: %d" %oov)
log.info("* Embedding size (%s)" % (", ".join(map(str, list(ret.size())))))
return ret
def make_type2vec(filepath, typeDict):
log.info("Start loading pretrained type vecs")
type_model = torch.load(filepath, map_location='cuda' if torch.cuda.is_available() else 'cpu')
types = type_model["objects"]
vecs = type_model["model"]["lt.weight"]
type2vec = {types[i]: vecs[i] for i in range(len(types))}
ret = []
target_vec = vecs[0]
for idx in range(typeDict.size()):
label = typeDict.idx2label[idx]
if label in type2vec: # It adds the right vector in case that it has it, or the previous vector
target_vec = type2vec[label] # It is a way to assign some "pseudo" random vector for the few types that
ret.append(target_vec) # we don't have a poincare embedding
ret = torch.stack(ret) # creates a "matrix" of typeDict.size() x type_embed_dim
log.info("* Embedding size (%s)" % (", ".join(map(str, list(ret.size())))))
return ret
def make_data(data_files, vocabs, type_quantity, args):
data = []
for fname in data_files:
file_path = path.join(args.dataset, fname)
for line in tqdm(open(file_path, buffering=BUFFER_SIZE), total=figet.utils.wc(file_path)):
fields, _ = process_line(line)
mention = figet.Mention(fields)
data.append(mention)
log.info("Prepared {} mentions.".format(len(data)))
dataset = figet.Dataset(data, args, type_quantity)
log.info(f"Transforming to matrix {len(data)} mentions from {data_files}")
dataset.to_matrix(vocabs, args)
return dataset
def main(args):
log.info("Preparing vocabulary...")
vocabs = make_vocabs(args)
log.info("Preparing pretrained word vectors...")
word2vec = make_word2vec(args.word2vec, vocabs[TOKEN_VOCAB])
log.info("Preparing pretrained type vectors...")
type2vec = make_type2vec(args.type2vec, vocabs[TYPE_VOCAB])
log.info("Preparing training...")
train = make_data([CR_TRAIN, EL_TRAIN, HW_TRAIN], vocabs, len(type2vec), args)
log.info("Preparing dev...")
dev = make_data([CR_DEV], vocabs, len(type2vec), args)
log.info("Preparing test...")
test = make_data([CR_TEST], vocabs, len(type2vec), args)
log.info("Saving pretrained word vectors to '%s'..." % (args.save_data + "/word2vec.pt"))
torch.save(word2vec, args.save_data + "/word2vec.pt")
log.info("Saving pretrained type vectors to '%s'..." % (args.save_data + "/type2vec.pt"))
torch.save(type2vec, args.save_data + "/type2vec.pt")
log.info("Saving data to '%s'..." % (args.save_data + "/data.pt"))
save_data = {"vocabs": vocabs, "train": train, "dev": dev, "test": test}
torch.save(save_data, args.save_data + "/data.pt")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="preprocess.py")
# Input data
parser.add_argument("--dataset", required=True, help="Path to the dataset")
parser.add_argument("--word2vec", required=True, type=str, help="Path to pretrained word vectors.")
parser.add_argument("--type2vec", required=True, type=str, help="Path to pretrained type vectors.")
parser.add_argument("--emb_size", default=300, type=int, help="Embedding size.")
# Mention
parser.add_argument("--mention_length", default=5, type=int,
help="Max amount of words taken for mention representation")
parser.add_argument("--mention_char_length", default=25, type=int,
help="Max amount of chars taken for mention representation")
# Context
parser.add_argument("--full_context_length", default=25, type=int,
help="Max amount of words of the left + mention + right context.")
parser.add_argument("--side_context_length", default=10, type=int,
help="Max length of the context on each side (left or right)")
# Ops
parser.add_argument("--shuffle", action="store_true", help="Shuffle data.")
# Output data
parser.add_argument("--save_data", required=True, help="Path to the output data.")
args = parser.parse_args()
figet.utils.set_seed(42)
main(args)