-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_detection.py
102 lines (88 loc) · 3.35 KB
/
final_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import cv2
import numpy as np
# img = cv2.imread('./backs/final_back_9.jpg')
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
car_cascade = cv2.CascadeClassifier('./xmls/cascade_very_good.xml')
car_cascade_2 = cv2.CascadeClassifier('./haar/classifier/cascade.xml')
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if ret:
left_lane = gray[279:380,:204]
mid_lane = gray[220:314,324:465]
right_lane = gray[300:400,465:]
right_car = car_cascade_2.detectMultiScale(right_lane,1.10,3, minSize = (40,30), maxSize=(80,70))
# for (x, y, w, h) in right_car:
# cv2.rectangle(right_lane, (x, y), (x + w, y + h), (0, 0, 0), 3)
left_car = car_cascade_2.detectMultiScale(left_lane,1.10,3, minSize = (40,30), maxSize=(80,70))
# for (x, y, w, h) in left_car:
# cv2.rectangle(left_lane, (x, y), (x + w, y + h), (0, 0, 0), 3)
mid_car = car_cascade_2.detectMultiScale(mid_lane,1.10,1, minSize = (40,30), maxSize=(80,70))
# for (x, y, w, h) in mid_car:
# cv2.rectangle(mid_lane, (x, y), (x + w, y + h), (0, 0, 0), 3)
cars = [len(left_car), len(mid_car), len(right_car)]
# max = cars.index(max(cars))
# cv2.imshow('lef', left_lane)
# cv2.imshow('right', right_lane)
# cv2.imshow('mid', mid_lane)
#
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
print(cars.index(max(cars)))
# for (x,y,w,h) in mid_car:
# cv2.rectangle(mid_lane, (x, y), (x + w, y + h), (0, 0, 0), 3)
cv2.imshow('image', mid_lane)
# cv2.imshow(str(p), i[y:y + h, x:x + w])
# p+=1
# print(len(right_car), len(mid_car),len(left_car))
# cars = car_cascade.detectMultiScale(gray,1.10,1, minSize = (40,30), maxSize=(80,70))
#
# split = [left_lane,mid_lane,right_lane]
# # i = 0
# p = 0
# max = 0
# for i in split:
# cars = car_cascade.detectMultiScale(i,1.10,1,minSize=(50,40), maxSize=(70,50))
# for (x,y,w,h) in cars:
#
# if not whiteness(i,x,y,w,h):
# cv2.rectangle(i, (x, y), (x + w, y + h), (0, 0, 0), 3)
# num_car = len(cars)
#
# # cv2.imshow(str(p), i[y:y + h, x:x + w])
# # p+=1
#
# #
# cv2.imshow(str(p), i)
# p+=1
#
# car_left = car_cascade.detectMultiScale(left_lane, 1.10, 1, minSize=(50,40), maxSize=(70,50))
# num_left_car = 0
# for (x,y,w,h) in car_left:
# if not whiteness(left_lane, x,y,w,h):
# cv2.rectangle(left_lane,(x,y), (x+w,y+h),(0,0,0), 3)
# num_left_car+=1
# print(num_left_car)
#
#
#
# car_right = car_cascade.detectMultiScale(right_lane, 1.10, 1, minSize=(50,40), maxSize=(70,50))
# num_right_car = 0
# for (x,y,w,h) in car_right:
# if not whiteness(right_lane, x,y,w,h):
# cv2.rectangle(right_lane,(x,y), (x+w,y+h),(0,0,0), 3)
# num_right_car+=1
#
# car_mid = car_cascade.detectMultiScale(mid_lane, 1.10, 1, minSize=(50, 40), maxSize=(70, 50))
# num_mid_car = 0
# for (x, y, w, h) in car_mid:
# if not whiteness(mid_lane, x, y, w, h):
# cv2.rectangle(mid_lane, (x, y), (x + w, y + h), (0, 0, 0), 3)
# num_mid_car += 1
#
#
# print(num_left_car, 'left car')
# print(num_right_car,'right car')
# print(num_mid_car,'mid lane')
#