-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsparse_x_generator.py
184 lines (145 loc) · 6.16 KB
/
sparse_x_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""
Functions to create sparse gene expression profiles, i.e., gene masking.
"""
import numpy as np
import pandas as pd
import re
import os
from random import shuffle
import pickle
def get_gene_ids(gene_names, symbols=True):
if symbols:
gene_ids = list(map(str, gene_names))
else:
gene_ids = [i.replace('geneid.', '') for i in gene_names]
gene_ids = list(map(int, gene_ids))
return gene_ids
def get_broadinst_gene_sets(gmt_file):
gs = {}
with open(gmt_file, 'r') as f:
for line in f:
genes = line.strip('\n').split('\t')
gs[genes[0]] = genes[2:]
gs_keys = list(gs.keys())
sizes = np.array([len(gs[i]) for i in gs_keys])
return gs, gs_keys, sizes
def get_subset_gene_set(array_ids, gmt_file, min_size=100):
gs, keys, sizes = get_broadinst_gene_sets(gmt_file=gmt_file)
# get gs with at least 100 genes
keys = np.array(keys)
keys = keys[np.where(sizes >= min_size)]
print('gene sets num: ', len(keys))
gs = {k: gs.get(k) for k in keys}
# get genes set in gene set
genes_gs = {k: gs.get(k) for k in keys} # genes in each list
genes_gs = [j for i in genes_gs.values() for j in i] # unlist
gene_set = set(genes_gs)
# get genes that are not in the gene set
t = {k: 1 for k in array_ids if k not in gene_set}
print('array genes not in gene set (added as a gene set): ', len(t))
gs['others'] = list(t.keys()) # add other genes to gene set
return gs
def get_broadinst_collection(gmt_files):
gs = {}
gs_names = {}
gs_sizes = {}
for i in gmt_files:
k = re.sub('.v6.2.symbols.gmt', '', os.path.basename(i))
gs[k], gs_names[k], gs_sizes[k] = get_broadinst_gene_sets(i)
return gs, gs_names, gs_sizes
def format_chrome(gs, gs_keys):
# further format chrome so each geneset is one chrome
k = ['chr' + str(i) for i in np.arange(1, 23)]
k.append('chry')
k.append('chrx')
gs = {t: sum([gs[i] for i in gs_keys if re.match(t + 'q', i)], []) for t in k}
sizes = np.array([len(gs[i]) for i in gs_keys])
return gs, k, sizes
def get_verhaak_gene_sets(gs_file):
# get verhaak gene set
verhaak = pd.read_table(gs_file, sep='\t', header=1)
verhaak = verhaak[['Subtype', 'GO genes']]
verhaak.columns = ['go_genes', 'subtype']
all_genes = verhaak['go_genes'].values
subtypes = ['NL', 'PN', 'CL', 'MES']
verhaak = {i: verhaak['go_genes'].loc[verhaak['subtype'] == i].values for i in subtypes}
verhaak['all'] = all_genes
return verhaak
def print_sizes(sizes):
print(len(sizes))
print(sum(sizes))
print(min(sizes))
print(max(sizes))
def get_gs_subset(gs, gs_sizes, min_genes=None):
# remove gs that do not have at least x genes
k = np.array(list(gs.keys()))
k = k[gs_sizes >= min_genes]
print(len(k))
sub_gs = {i: gs.get(i) for i in k}
return sub_gs
def get_sparse_idx(genes, gene_ids):
# genes = list of genes in pathway
# gene_ids = list of gene_ids of all genes
gene_idx = [gene_ids.index(g) for g in genes if g in gene_ids] # get the index of genes in pathway
gene_idx = np.array(gene_idx)
return gene_idx
def get_sparse_genes(gene_idx, ge_profile):
gene_dim = ge_profile.shape[0]
ge_profile = np.reshape(ge_profile, (gene_dim,))
sparse_x = np.zeros(gene_dim) # create empty vector
sparse_x[gene_idx] = ge_profile[gene_idx] # set values to patient values for each gene in pathway
return sparse_x
def get_sparse_x(genes, gene_ids, ge_profile):
# create sparse input to nn based on patient's values for pathway
# genes = list of genes in pathway
# gene_ids = list of gene_ids of all genes
# ge_profile = array of gene expressions for one person
gene_idx = get_sparse_idx(genes, gene_ids) # get the index of genes in pathway
if gene_idx.size !=0 :
sparse_x = get_sparse_genes(gene_idx=gene_idx, ge_profile=ge_profile)
else:
sparse_x = None
return sparse_x
def generate_data(y, gene_expr, gene_sets, gene_ids, batch, gs_idx_fn, sparse_batch=10, ae=False):
# gene_expr = data frame, rows of patients, cols of gene expressions
# batch = batch size
# pathways = dictionary pathway key is name and values are list of genes
while True:
if ae:
n, gene_dim = gene_expr.shape
else:
n, gene_dim, _ = gene_expr.shape
path_names = list(gene_sets.keys())
shuffle(path_names)
# get sparse indices beforehand
if os.path.isfile(gs_idx_fn):
gs_indx = pickle.load(open(gs_idx_fn, 'rb'))
else:
gs_indx = {i: get_sparse_idx(genes=gene_sets.get(i), gene_ids=gene_ids) for i in path_names}
pickle.dump(gs_indx, open(gs_idx_fn, 'wb'))
for i in range(0, n, batch): # iterate through people
iend = min(i+batch, n)
for j in range(0, len(path_names), sparse_batch): # iterate through gene set
jend = min(j+sparse_batch, len(path_names))
reps = jend - j
if ae:
# inputs
paths = [get_sparse_genes(gene_idx=gs_indx.get(path_names[path]),
ge_profile=gene_expr[person, :])
for path in range(j, jend)
for person in range(i, iend)] # sparse paths
paths = np.array(paths)
# outputs
labels = np.tile(gene_expr[i:iend, :], (reps, 1))
else:
# inputs
paths = [get_sparse_genes(gene_idx=gs_indx.get(path_names[path]),
ge_profile=gene_expr[person, :, 0])
for path in range(j, jend)
for person in range(i, iend)] # sparse paths
paths = np.array(paths)
paths = paths.reshape(len(paths), gene_dim, 1) # reshape input into 3-D shape
# outputs TODO check for group predictions, y is array
labels = y[i:iend]
labels = np.tile(labels, reps)
yield (paths, labels)