forked from lm-sys/FastChat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_openai_api.py
113 lines (88 loc) · 2.73 KB
/
test_openai_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
"""
Test the OpenAI compatible server
Launch:
python3 launch_openai_api_test_server.py
"""
import openai
from fastchat.utils import run_cmd
openai.api_key = "EMPTY" # Not support yet
openai.api_base = "http://localhost:8000/v1"
def test_list_models():
model_list = openai.Model.list()
names = [x["id"] for x in model_list["data"]]
return names
def test_completion(model):
prompt = "Once upon a time"
completion = openai.Completion.create(model=model, prompt=prompt, max_tokens=64)
print(prompt + completion.choices[0].text)
def test_completion_stream(model):
prompt = "Once upon a time"
res = openai.Completion.create(
model=model, prompt=prompt, max_tokens=64, stream=True
)
print(prompt, end="")
for chunk in res:
content = chunk["choices"][0]["text"]
print(content, end="", flush=True)
print()
def test_embedding(model):
embedding = openai.Embedding.create(model=model, input="Hello world!")
print(f"embedding len: {len(embedding['data'][0]['embedding'])}")
def test_chat_completion(model):
completion = openai.ChatCompletion.create(
model=model, messages=[{"role": "user", "content": "Hello! What is your name?"}]
)
print(completion.choices[0].message.content)
def test_chat_completion_stream(model):
messages = [{"role": "user", "content": "Hello! What is your name?"}]
res = openai.ChatCompletion.create(model=model, messages=messages, stream=True)
for chunk in res:
content = chunk["choices"][0]["delta"].get("content", "")
print(content, end="", flush=True)
print()
def test_openai_curl(model):
run_cmd("curl http://localhost:8000/v1/models")
run_cmd(
"""
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "vicuna-7b-v1.3",
"messages": [{"role": "user", "content": "Hello! What is your name?"}]
}'
"""
)
run_cmd(
"""
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "vicuna-7b-v1.3",
"prompt": "Once upon a time",
"max_tokens": 41,
"temperature": 0.5
}'
"""
)
run_cmd(
"""
curl http://localhost:8000/v1/embeddings \
-H "Content-Type: application/json" \
-d '{
"model": "vicuna-7b-v1.3",
"input": "Hello world!"
}'
"""
)
if __name__ == "__main__":
models = test_list_models()
print(f"models: {models}")
for model in models:
print(f"===== Test {model} ======")
test_completion(model)
test_completion_stream(model)
test_embedding(model)
test_chat_completion(model)
test_chat_completion_stream(model)
print("===== Test curl =====")
test_openai_curl("vicuna-7b-v1.3")