-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathontonotes5_to_json.py
192 lines (179 loc) · 7.76 KB
/
ontonotes5_to_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from argparse import ArgumentParser
import codecs
import gc
import json
import os
import random
import tarfile
from tempfile import NamedTemporaryFile
from tqdm import tqdm
from ontonotes5.utils import parse_file, parse_splitting, check_onf_name
from ontonotes5.utils import get_language_by_filename
from ontonotes5.utils import get_language_frequencies, get_entity_frequencies
def main():
parser = ArgumentParser()
parser.add_argument(
'-s',
'--src',
dest='source_file', type=str, required=True,
help='The source *.tgz file with gzipped Ontonotes 5 dataset (see '
'https://catalog.ldc.upenn.edu/LDC2013T19).'
)
parser.add_argument(
'-d',
'--dst',
dest='dst_file', type=str, required=True,
help='The destination *.json file with texts and their annotations '
'(named entities, morphology and syntax).'
)
parser.add_argument(
'-i',
'--ids',
dest='train_dev_test_ids', type=str, required=False, default=None,
help='The directory with identifiers list, which is described the '
'Ontonotes 5 splitting by subsets for training, development '
'(validation) and final testing (see '
'http://conll.cemantix.org/2012/download/ids/).'
)
parser.add_argument(
'-r',
'--random',
dest='random_seed', type=int, required=False, default=None,
help='A random seed.'
)
cmd_args = parser.parse_args()
if cmd_args.random_seed is not None:
random.seed(cmd_args.random_seed)
src_file_name = os.path.normpath(cmd_args.source_file)
err_msg = 'File "{0}" does not exist!'.format(src_file_name)
assert os.path.isfile(src_file_name), err_msg
dst_file_name = os.path.normpath(cmd_args.dst_file)
dst_file_dir = os.path.dirname(dst_file_name)
if len(dst_file_dir) > 0:
err_msg = 'Directory "{0}" does not exist!'.format(dst_file_dir)
assert os.path.isdir(dst_file_dir), err_msg
if cmd_args.train_dev_test_ids is None:
ids_dir_name = None
else:
ids_dir_name = os.path.normpath(cmd_args.train_dev_test_ids)
err_msg = 'Directory "{0}" does not exist!'.format(ids_dir_name)
assert os.path.isdir(dst_file_dir), err_msg
data_for_training = []
data_for_validation = []
data_for_testing = []
if ids_dir_name is None:
splitting = None
else:
splitting = parse_splitting(ids_dir_name)
assert len(set(splitting['train']) & set(splitting['test'])) == 0
assert len(set(splitting['train']) & set(splitting['development'])) == 0
assert len(set(splitting['development']) & set(splitting['test'])) == 0
files_with_errors = []
with tarfile.open(src_file_name, mode='r:*', encoding='utf-8') as tgz_fp:
onf_names = list(map(
lambda it2: it2.name,
filter(
lambda it1: it1.isfile() and it1.name.endswith('.onf'),
tgz_fp.getmembers()
)
))
number_of_members = len(onf_names)
err_msg = 'There are no labeled texts with *.onf extension in the ' \
'"{0}"!'.format(src_file_name)
assert number_of_members > 0, err_msg
for cur_name in tqdm(onf_names):
language = get_language_by_filename(cur_name)
tmp_name = None
try:
with NamedTemporaryFile(mode='w', delete=False) as tmp_fp:
tmp_name = tmp_fp.name
binary_stream = tgz_fp.extractfile(cur_name)
if binary_stream is not None:
binary_data = binary_stream.read()
with open(tmp_name, 'wb') as tmp_fp:
tmp_fp.write(binary_data)
del binary_data, binary_stream
parsed, err_msg_2 = parse_file(tmp_name, cur_name)
if err_msg_2 != '':
files_with_errors.append((cur_name, err_msg_2))
n = len(parsed)
if n > 0:
for idx in range(n):
parsed[idx]['language'] = language
if splitting is None:
data_for_training += parsed
else:
dst_key = check_onf_name(cur_name, splitting)
if dst_key == 'train':
data_for_training += parsed
elif dst_key == 'development':
data_for_validation += parsed
elif dst_key == 'test':
data_for_testing += parsed
finally:
if tmp_name is not None:
if os.path.isfile(tmp_name):
os.remove(tmp_name)
gc.collect()
with codecs.open(dst_file_name, mode='w', encoding='utf-8',
errors='ignore') as fp:
random.shuffle(data_for_training)
res = {'TRAINING': data_for_training}
if splitting is None:
assert len(data_for_validation) == 0
assert len(data_for_testing) == 0
else:
assert len(data_for_validation) > 0
assert len(data_for_testing) > 0
random.shuffle(data_for_validation)
res['VALIDATION'] = data_for_validation
random.shuffle(data_for_testing)
res['TESTING'] = data_for_testing
json.dump(res, fp=fp, ensure_ascii=False, indent=4, sort_keys=True)
print('{0} files are processed.'.format(number_of_members))
n_errors = len(files_with_errors)
if n_errors > 0:
print('{0} files from them contain some errors.'.format(n_errors))
print('They are:')
for filename, err_msg in files_with_errors:
print(' file name "{0}"'.format(filename))
print(' error "{0}"'.format(err_msg))
assert len(data_for_training) > 0
if splitting is None:
print('{0} samples are loaded...'.format(len(data_for_training)))
languages_for_training = get_language_frequencies(data_for_training)
print('By languages:')
for lang, freq in languages_for_training:
entity_stat = get_entity_frequencies(data_for_training, lang)
print(' {0}:'.format(lang))
print(' {0} samples;'.format(freq))
print(' {0} entities, among them:'.format(
sum([cur[1] for cur in entity_stat])
))
max_width = max([len(cur[0]) for cur in entity_stat])
for entity_type, entity_freq in entity_stat:
print(' {0:>{1}} {2}'.format(entity_type, max_width,
entity_freq))
else:
for goal in res:
print('===============')
print(' {0}'.format(goal))
print('===============')
print('')
print('{0} samples are loaded...'.format(len(res[goal])))
languages_for_training = get_language_frequencies(res[goal])
print('By languages:')
for lang, freq in languages_for_training:
entity_stat = get_entity_frequencies(res[goal], lang)
print(' {0}:'.format(lang))
print(' {0} samples;'.format(freq))
print(' {0} entities, among them:'.format(
sum([cur[1] for cur in entity_stat])
))
max_width = max([len(cur[0]) for cur in entity_stat])
for entity_type, entity_freq in entity_stat:
print(' {0:>{1}} {2}'.format(entity_type, max_width,
entity_freq))
print('')
if __name__ == '__main__':
main()