-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfocal_loss.py
executable file
·45 lines (38 loc) · 1.83 KB
/
focal_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss(nn.Module):
"""
This class implements focal loss.
Focalloss = -1*alpha*(1-pt)*log(pt)
:param alpha: (tensor) 3D or 4D the scalar factor for this criterion
:param gamma: (float, double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
focus on hard misclassified examples
0 means deterministic, >0 favors focus more on classified examples
:param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch
"""
def __init__(self, gamma=0, alpha=None, size_average=True):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
if isinstance(alpha, (float, int)): self.alpha = torch.Tensor([alpha, 1-alpha])
if isinstance(alpha, list): self.alpha = torch.Tensor(alpha)
self.size_average = size_average
def forward(self, input, target):
if input.dim() > 2:
input = input.view(input.size(0), input.size(1), -1) # N,C,H,W -> N,C,H*W
input = input.transpose(1, 2) # N,C,H*W -> N,H*W,C
input = input.contiguous().view(-1, input.size(2)) # N,H*W,C -> N*H*W,C
target = target.view(-1, 1)
logpt = F.log_softmax(input, dim=1)
logpt = logpt.gather(1, target)
logpt = logpt.view(-1)
pt = logpt.exp()
if self.alpha is not None:
if self.alpha.type() != input.data.type():
self.alpha = self.alpha.type_as(input.data)
at = self.alpha.gather(0, target.data.view(-1))
logpt = logpt * at
loss = -1 * (1 - pt)**self.gamma * logpt
if self.size_average: return loss.mean()
else: return loss.sum()