-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdcase2023_task2_evaluator.py
557 lines (488 loc) · 31.9 KB
/
dcase2023_task2_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import os
import sys
import csv
from io import StringIO
import glob
import re
import numpy
import itertools
import scipy.stats
from sklearn import metrics
import pandas as pd
import argparse
from pathlib import Path
sys.path.append('./')
from tools.plot_anm_score import AnmScoreFigData
from distutils.util import strtobool
##############################################################################
# static values
##############################################################################
# Expected directory structure
# ./dcase2023_task2_evaluator/
# ./teams "Directory containing team results"
# ./<team name> "Directory containing anomaly score and decision result"
# ./ground_truth_data "Directory where the true value is stored"
# ./ground_truth_domain "Directory where the domain assignment is stored"
# ./teams_result "Directory created after execution."
# directory path
GROUND_TRUTH_DATA_DIR = "ground_truth_data"
GROUND_TRUTH_DOMAIN_DIR = "ground_truth_domain"
GROUND_TRUTH_ATTRIBUTES_DIR = "ground_truth_attributes"
# Table columns
COLUMNS = ["AUC (all)", "AUC (source)", "AUC (target)", "pAUC", "precision (source)", "precision (target)",
"recall (source)", "recall (target)", "F1 score (source)", "F1 score (target)"]
OFFICIAL_SCORE_COLUMNS = [
"official score", "arithmetic mean", "harmonic mean (source)", "harmonic mean (target)",
"ToyDrone AUC (source)", "ToyNscale AUC (source)", "ToyTank AUC (source)", "Vacuum AUC (source)", "bandsaw AUC (source)", "grinder AUC (source)", "shaker AUC (source)",
"ToyDrone AUC (target)", "ToyNscale AUC (target)", "ToyTank AUC (target)", "Vacuum AUC (target)", "bandsaw AUC (target)", "grinder AUC (target)", "shaker AUC (target)",
]
MACHINE_TYPE_SCORE_COLMNS = [
"AUC (source)", "AUC (target)", "pAUC",
"precision (source)", "precision (target)",
"recall (source)", "recall (target)",
"F1 score (source)", "F1 score (target)"
]
SCORE_COLUMNS = [
"official score", "arithmetic mean", "harmonic mean (source)", "harmonic mean (target)",
"ToyDrone Score (source)", "ToyNscale Score (source)", "ToyTank Score (source)", "Vacuum Score (source)", "bandsaw Score (source)", "grinder Score (source)", "shaker Score (source)",
"ToyDrone Score (target)", "ToyNscale Score (target)", "ToyTank Score (target)", "Vacuum Score (target)", "bandsaw Score (target)", "grinder Score (target)", "shaker Score (target)",
]
PAPER_OFFICIAL_SCORE_COLUMNS = ["h-mean", "a-mean", "ToyDrone", "ToyNscale", "ToyTank", "Vacuum", "bandsaw", "grinder", "shaker"]
SYSTEM_OFFICIAL_SCORE_INDEXES = ["AUC (source)", "AUC (target)", "pAUC (source, target)", "TOTAL score"]
# variables that do not change
MAX_FPR = 0.1
FILE_NAME_COL = 0
SCORE_COL = 1
##############################################################################
# common def
##############################################################################
# save csv
def save_csv(save_file_path, save_data):
with open(save_file_path, "w", newline="") as f:
writer = csv.writer(f, lineterminator='\n')
writer.writerows(save_data)
# CSV format text to a list of rows decomposed as lists
def csv_text_to_list(csv_text):
f = StringIO(csv_text)
reader = csv.reader(f, delimiter=',')
return [row for row in reader]
# extract machine types from ground truth
def get_machines(load_dir, ext=".csv"):
query = os.path.abspath("{base}/ground_truth_*{ext}".format(base=load_dir,
ext=ext))
machines = sorted(glob.glob(query))
machines = [os.path.basename(f).split("_")[2] for f in machines]
machines = sorted(list(set(machines)))
return machines
# extract section id from anomaly score csv
def get_section_ids(target_dir, ext=".csv"):
query = os.path.abspath("{target_dir}/ground_truth_*{ext}".format(target_dir=target_dir,
ext=ext))
paths = sorted(glob.glob(query))
ids = sorted(list(set(itertools.chain.from_iterable(
[re.findall('section_[0-9][0-9]', ext_id) for ext_id in paths]
))))
return ids
# read score from csv
def read_score(file_path, decision=False, attribute=None):
with open(file_path) as score_file:
score_list = list(csv.reader(score_file))
if attribute:
score_list = [[attribute[score[FILE_NAME_COL]], score[SCORE_COL]] if score[FILE_NAME_COL] in attribute else score for score in score_list]
score_data = [float(score[SCORE_COL]) for score in sorted(score_list)]
if decision:
score_data = [int(s) for s in score_data]
return numpy.array(score_data)
# Jackknife resampling - https://en.wikipedia.org/wiki/Jackknife_resampling
def jackknife_estimate(fn, var_list):
# See section IV on page 6 on https://hal.inria.fr/hal-02067935/file/mesaros_TASLP19.pdf
# Reference: A. Mesaros et al., "Sound Event Detection in the DCASE 2017 Challenge," in IEEE/ACM Transactions on Audio,
# Speech, and Language Processing, vol. 27, no. 6, pp. 992-1006, June 2019, doi: 10.1109/TASLP.2019.2907016.
def removed_i(var_list, remove_i):
return [v[[i for i in range(len(v)) if i != remove_i]] for v in var_list]
var_list = [numpy.array(v) for v in var_list]
N = len(var_list[0])
# (1)
theta_hat = fn(*var_list)
# (2)
thetai_hats = [fn(*removed_i(var_list, i)) for i in range(N)]
# (3)
theta_hat_mean = numpy.mean(thetai_hats)
# (4)
thetai_tildes = [N * theta_hat - (N - 1) * thetai_hat for thetai_hat in thetai_hats]
# (5)
theta_hat_jack = numpy.mean(thetai_tildes)
# (6)
sigma_hat_jack = numpy.sqrt(numpy.sum([(thi - theta_hat_mean)**2 for thi in thetai_hats]) / (N * (N-1)))
# (7) - CI only
confidence = 0.95
dof = N - 1
t_crit = numpy.abs(scipy.stats.t.ppf((1 - confidence) / 2, dof))
ci95_jack = t_crit * sigma_hat_jack
return theta_hat_jack, ci95_jack
# [main] output the result from the specified directory and machine type
def output_result(target_dir, machines, section_ids, result_dir, additional_result_dir, seed, tag, out_all=False):
print(target_dir)
csv_lines = []
all_y_preds, all_y_trues = [], []
all_df = pd.DataFrame(columns=["section"] + COLUMNS)
official_score_df = pd.DataFrame(
index=[os.path.basename(target_dir)],
columns=OFFICIAL_SCORE_COLUMNS,
)
index_df = pd.DataFrame({
"System":[os.path.basename(target_dir)] * len(SYSTEM_OFFICIAL_SCORE_INDEXES),
"metric":SYSTEM_OFFICIAL_SCORE_INDEXES
})
multi_index = pd.MultiIndex.from_frame(index_df)
paper_official_score_df = pd.DataFrame(
index=multi_index,
columns=PAPER_OFFICIAL_SCORE_COLUMNS
)
auc_df = {}
index_list = []
score_df = {}
for section_id in section_ids:
auc_df[section_id] = pd.DataFrame(
index=[os.path.basename(target_dir)],
columns=OFFICIAL_SCORE_COLUMNS,
)
index_list.append(section_id.split("_", 1)[1])
score_df[section_id] = pd.DataFrame(
index=[os.path.basename(target_dir)],
columns=SCORE_COLUMNS,
)
y_pred_domain_list = []
y_true_domain_list = []
y_true_list = []
for machine_idx, target_machine in enumerate(machines):
anm_score_figdata = AnmScoreFigData()
machine_type_score_df = pd.DataFrame(
index=index_list + ["arithmetic mean", "harmonic mean"],
columns=MACHINE_TYPE_SCORE_COLMNS
)
print("[{idx}/{total}] machine type : {target_machine}".format(target_machine=target_machine,
idx=machine_idx+1,
total=len(machines)))
csv_lines.append([target_machine])
df = pd.DataFrame(columns=["section"] + COLUMNS).set_index('section')
y_pred_domain_id_list = []
y_true_domain_id_list = []
y_true_id_list = []
for section_id in section_ids:
sidx = section_id.split("_", 1)[1]
print(section_id)
# Load results and ground truth
anomaly_score_path = "{dir}/anomaly_score_{machine}_{section}_test.csv".format(dir=target_dir,
machine=target_machine,
section=section_id)
decision_result_path = "{dir}/decision_result_{machine}_{section}_test.csv".format(dir=target_dir,
machine=target_machine,
section=section_id)
ground_truth_path = "{dir}/ground_truth_{machine}_{section}_test.csv".format(dir=GROUND_TRUTH_DATA_DIR,
machine=target_machine,
section=section_id)
gt_domain_path = "{dir}/ground_truth_{machine}_{section}_test.csv".format(dir=GROUND_TRUTH_DOMAIN_DIR,
machine=target_machine,
section=section_id)
gt_attribute_path = "{dir}/ground_truth_{machine}_{section}_test.csv".format(dir=GROUND_TRUTH_ATTRIBUTES_DIR,
machine=target_machine,
section=section_id)
if not os.path.exists(anomaly_score_path) or \
not os.path.exists(decision_result_path):
# Load DCASE2023 baseline results
anomaly_score_path = "{dir}/anomaly_score_DCASE2023T2{machine}_{section}_test_seed{seed}{tag}_Eval.csv".format(
dir=target_dir,
machine=target_machine,
section=section_id,
seed=seed,
tag=tag)
decision_result_path = "{dir}/decision_result_DCASE2023T2{machine}_{section}_test_seed{seed}{tag}_Eval.csv".format(
dir=target_dir,
machine=target_machine,
section=section_id,
seed=seed,
tag=tag)
if not os.path.exists(anomaly_score_path) or \
not os.path.exists(decision_result_path) or \
not os.path.exists(ground_truth_path) or \
not os.path.exists(gt_domain_path) or \
not os.path.exists(gt_attribute_path):
print(f"not have the all score : {target_dir}")
return 0, None, None, None, None
with open(gt_attribute_path) as attribute_file:
attribute_list = list(csv.reader(attribute_file))
attribute_dict = {f"{attribute[1]}.wav":attribute[0] for attribute in attribute_list}
y_pred_all = read_score(os.path.abspath(anomaly_score_path), attribute=attribute_dict)
y_true_all = read_score(os.path.abspath(ground_truth_path))
y_domain = read_score(os.path.abspath(gt_domain_path))
decision_result_data_all = read_score(os.path.abspath(decision_result_path), decision=True, attribute=attribute_dict)
all_y_preds.extend(y_pred_all)
all_y_trues.extend(y_true_all)
# Evaluate for whole section
df.loc[sidx, 'AUC (all)'] = metrics.roc_auc_score(y_true_all, y_pred_all)
df.loc[sidx, 'pAUC'] = metrics.roc_auc_score(y_true_all, y_pred_all, max_fpr=MAX_FPR)
# set score for each machine ID
machine_type_score_df.loc[sidx, 'pAUC'] = df.loc[sidx, 'pAUC']
for label_idx, label in enumerate(['normal', 'anomaly']):
print(f"{label} : {len(y_true_all[y_true_all == label_idx])} files")
# Evaluate for each domain
for domain in ['source', 'target']:
domain_idx = {'source': 0, 'target': 1}[domain]
print(f"{domain} : {len(y_domain[y_domain == domain_idx])} files")
# Filter by domain
y_pred_auc = y_pred_all[(y_domain == domain_idx) | (y_true_all != 0)]
y_true_auc = y_true_all[(y_domain == domain_idx) | (y_true_all != 0)]
y_pred = y_pred_all[y_domain == domain_idx]
y_true = y_true_all[y_domain == domain_idx]
y_pred_nml = y_pred_all[(y_domain == domain_idx) & (y_true_all == 0)]
decision_result_data = decision_result_data_all[y_domain == domain_idx]
if len(y_true) != len(y_pred) or len(y_true) != len(decision_result_data):
print("number of reference elements:", len(y_true))
print("anomaly score element count:", len(y_pred), " path:", anomaly_score_path)
print("decision data element count:", len(decision_result_data), " path:", decision_result_path)
print("some elements are missing")
return -1, None, None, None, None
# calc result
df.loc[sidx, f'AUC ({domain})'] = metrics.roc_auc_score(y_true_auc, y_pred_auc)
tn, fp, fn, tp = metrics.confusion_matrix(y_true, decision_result_data).ravel()
prec = tp / numpy.maximum(tp + fp, sys.float_info.epsilon)
recall = tp / numpy.maximum(tp + fn, sys.float_info.epsilon)
df.loc[sidx, f'precision ({domain})'] = prec
df.loc[sidx, f'recall ({domain})'] = recall
df.loc[sidx, f'F1 score ({domain})'] = 2.0 * prec * recall / numpy.maximum(prec + recall, sys.float_info.epsilon)
# set score for each machine ID
machine_type_score_df.loc[sidx, f'AUC ({domain})'] = df.loc[sidx, f'AUC ({domain})']
# machine_type_score_df.loc[sidx, f'pAUC ({domain})'] = metrics.roc_auc_score(y_true_auc, y_pred_auc, max_fpr=MAX_FPR)
machine_type_score_df.loc[sidx, f'precision ({domain})'] = df.loc[sidx, f'precision ({domain})']
machine_type_score_df.loc[sidx, f'recall ({domain})'] = df.loc[sidx, f'recall ({domain})']
machine_type_score_df.loc[sidx, f'F1 score ({domain})'] = df.loc[sidx, f'F1 score ({domain})']
anm_score_figdata.append_figdata(anm_score_figdata.anm_score_to_figdata(
scores=[[t, p] for t, p in zip(y_true, y_pred)],
title=f"{section_id}_{domain}_AUC{df.loc[sidx, f'AUC ({domain})']}"
))
score_df[section_id].at[os.path.basename(target_dir), f"{target_machine} Score ({domain})"] = y_pred_nml.mean()
y_pred_domain_list.append(sum(y_pred_domain_id_list, []))
y_true_domain_list.append(sum(y_true_domain_id_list, []))
y_true_list.append(sum(y_true_id_list, []))
csv_lines.extend(csv_text_to_list(df.to_csv()))
all_df = pd.concat([all_df, df])
csv_lines.append(["", "", "AUC", "pAUC", "precision", "recall", "F1 score"])
performance = numpy.array([
df[["AUC (source)"]].values[:, 0].tolist() + df[["AUC (target)"]].values[:, 0].tolist(),
df[["pAUC"]].values[:, 0].tolist() + df[["pAUC"]].values[:, 0].tolist(),
df[["precision (source)"]].values[:, 0].tolist() + df[["precision (target)"]].values[:, 0].tolist(),
df[["recall (source)"]].values[:, 0].tolist() + df[["recall (target)"]].values[:, 0].tolist(),
df[["F1 score (source)"]].values[:, 0].tolist() + df[["F1 score (target)"]].values[:, 0].tolist(),
], dtype=float)
amean_performance = numpy.mean(performance, axis=1)
csv_lines.append(["arithmetic mean", ""] + list(amean_performance))
hmean_performance = scipy.stats.hmean(numpy.maximum(performance, sys.float_info.epsilon), axis=1)
csv_lines.append(["harmonic mean", ""] + list(hmean_performance))
hmean_performance = scipy.stats.hmean(numpy.maximum(performance[:, :performance.shape[1]//2], sys.float_info.epsilon), axis=1)
csv_lines.append(["source harmonic mean", ""] + list(hmean_performance))
hmean_performance = scipy.stats.hmean(numpy.maximum(performance[:, performance.shape[1]//2:], sys.float_info.epsilon), axis=1)
csv_lines.append(["target harmonic mean", ""] + list(hmean_performance))
csv_lines.append([])
official_score_df.at[os.path.basename(target_dir), f"{target_machine} AUC (source)"] = numpy.mean(df[["AUC (source)"]].values[:, 0].tolist())
official_score_df.at[os.path.basename(target_dir), f"{target_machine} AUC (target)"] = numpy.mean(df[["AUC (target)"]].values[:, 0].tolist())
paper_official_score_df.at[(os.path.basename(target_dir), "AUC (source)"), target_machine] = numpy.mean(df[["AUC (source)"]].values[:, 0].tolist())
paper_official_score_df.at[(os.path.basename(target_dir), "AUC (target)"), target_machine] = numpy.mean(df[["AUC (target)"]].values[:, 0].tolist())
paper_official_score_df.at[(os.path.basename(target_dir), "pAUC (source, target)"), target_machine] = numpy.mean(df[["pAUC"]].values[:, 0].tolist())
# set score for each machine ID
for dataset_type in ["source", "target"]:
# pauc_list = [x for x in machine_type_score_df[f'pAUC ({dataset_type})'].tolist() if numpy.isnan(x) == False]
machine_type_score_df.loc["arithmetic mean", f"AUC ({dataset_type})"] = numpy.mean(df[[f"AUC ({dataset_type})"]].values[:, 0].tolist())
machine_type_score_df.loc["arithmetic mean", f"precision ({dataset_type})"] = numpy.mean(df[[f"precision ({dataset_type})"]].values[:, 0].tolist())
machine_type_score_df.loc["arithmetic mean", f"recall ({dataset_type})"] = numpy.mean(df[[f"recall ({dataset_type})"]].values[:, 0].tolist())
machine_type_score_df.loc["arithmetic mean", f"F1 score ({dataset_type})"] = numpy.mean(df[[f"F1 score ({dataset_type})"]].values[:, 0].tolist())
machine_type_score_df.loc["harmonic mean", f"AUC ({dataset_type})"] = scipy.stats.hmean(df[[f"AUC ({dataset_type})"]].values[:, 0].tolist())
machine_type_score_df.loc["harmonic mean", f"precision ({dataset_type})"] = scipy.stats.hmean(df[[f"precision ({dataset_type})"]].values[:, 0].tolist())
machine_type_score_df.loc["harmonic mean", f"recall ({dataset_type})"] = scipy.stats.hmean(df[[f"recall ({dataset_type})"]].values[:, 0].tolist())
machine_type_score_df.loc["harmonic mean", f"F1 score ({dataset_type})"] = scipy.stats.hmean(df[[f"F1 score ({dataset_type})"]].values[:, 0].tolist())
machine_type_score_df.loc["arithmetic mean", "pAUC"] = numpy.mean(df[["pAUC"]].values[:, 0].tolist())
machine_type_score_df.loc["harmonic mean", "pAUC"] = scipy.stats.hmean(df[["pAUC"]].values[:, 0].tolist())
for section_id, auc_source, auc_target in zip(section_ids, df[["AUC (source)"]].values[:, 0].tolist(), df[["AUC (target)"]].values[:, 0].tolist()):
auc_df[section_id].at[os.path.basename(target_dir), f"{target_machine} AUC (source)"] = auc_source
auc_df[section_id].at[os.path.basename(target_dir), f"{target_machine} AUC (target)"] = auc_target
if out_all:
os.makedirs(f"{additional_result_dir}/{os.path.basename(target_dir)}", exist_ok=True)
anm_score_figdata.show_fig(
title=f"{os.path.basename(target_dir)}_{target_machine}_{section_id}_anm_score",
export_dir=f"{additional_result_dir}/{os.path.basename(target_dir)}/"
)
csv_lines.append(["", "", "AUC", "pAUC", "precision", "recall", "F1 score"])
performance_over_all = numpy.array([
all_df[["AUC (source)"]].values[:, 0].tolist() + all_df[["AUC (target)"]].values[:, 0].tolist(),
all_df[["pAUC"]].values[:, 0].tolist() + all_df[["pAUC"]].values[:, 0].tolist(),
all_df[["precision (source)"]].values[:, 0].tolist() + all_df[["precision (target)"]].values[:, 0].tolist(),
all_df[["recall (source)"]].values[:, 0].tolist() + all_df[["recall (target)"]].values[:, 0].tolist(),
all_df[["F1 score (source)"]].values[:, 0].tolist() + all_df[["F1 score (target)"]].values[:, 0].tolist(),
], dtype=float)
# calculate averages for AUCs and pAUCs
## a-mean (all)
amean_performance = numpy.mean(performance_over_all, axis=1)
csv_lines.append(["arithmetic mean over all machine types, sections, and domains", ""] + list(amean_performance))
official_score_df.at[os.path.basename(target_dir), "arithmetic mean"] = float(amean_performance[0])
paper_official_score_df.at[(os.path.basename(target_dir),"pAUC (source, target)"), "a-mean"] = float(amean_performance[1])
## a-mean (source)
n_source = len(all_df[["AUC (source)"]].values[:, 0])
amean_performance = numpy.mean(performance_over_all[:, :n_source], axis=1)
paper_official_score_df.at[(os.path.basename(target_dir), "AUC (source)"), "a-mean"] = float(amean_performance[0])
## a-mean (target)
amean_performance = numpy.mean(performance_over_all[:, n_source:], axis=1)
paper_official_score_df.at[(os.path.basename(target_dir), "AUC (target)"), "a-mean"] = float(amean_performance[0])
## h-mean (all)
hmean_performance = scipy.stats.hmean(numpy.maximum(performance_over_all, sys.float_info.epsilon), axis=1)
csv_lines.append(["harmonic mean over all machine types, sections, and domains", ""] + list(hmean_performance))
paper_official_score_df.at[(os.path.basename(target_dir), "pAUC (source, target)"), "h-mean"] = float(hmean_performance[1])
## h-mean (source)
hmean_performance = scipy.stats.hmean(numpy.maximum(performance_over_all[:, :n_source], sys.float_info.epsilon), axis=1)
official_score_df.at[os.path.basename(target_dir), "harmonic mean (source)"] = float(hmean_performance[0])
paper_official_score_df.at[(os.path.basename(target_dir), "AUC (source)"), "h-mean"] = float(hmean_performance[0])
csv_lines.append(["source harmonic mean over all machine types, sections, and domains", ""] + list(hmean_performance))
## h-mean (target)
hmean_performance = scipy.stats.hmean(numpy.maximum(performance_over_all[:, n_source:], sys.float_info.epsilon), axis=1)
official_score_df.at[os.path.basename(target_dir), "harmonic mean (target)"] = float(hmean_performance[0])
paper_official_score_df.at[(os.path.basename(target_dir), "AUC (target)"), "h-mean"] = float(hmean_performance[0])
csv_lines.append(["target harmonic mean over all machine types, sections, and domains", ""] + list(hmean_performance))
csv_lines.append([])
all_perf = numpy.array([
all_df[["AUC (source)"]].values[:, 0].tolist() + all_df[["AUC (target)"]].values[:, 0].tolist()
+ all_df[["pAUC"]].values[:, 0].tolist(),
], dtype=float)
official_score = scipy.stats.hmean(numpy.maximum(all_perf, sys.float_info.epsilon), axis=None)
csv_lines.append(["official score", "", str(official_score)])
official_score_df.at[os.path.basename(target_dir), "official score"] = float(official_score)
paper_official_score_df.at[(os.path.basename(target_dir), "TOTAL score"), "h-mean"] = float(official_score)
paper_official_score_df.at[(os.path.basename(target_dir), "TOTAL score"), "a-mean"] = float(numpy.mean(all_perf))
auc_jack, auc_ci95 = jackknife_estimate(fn=metrics.roc_auc_score, var_list=[all_y_trues, all_y_preds])
pauc_jack, p_auc_ci95 = jackknife_estimate(fn=lambda a,b: metrics.roc_auc_score(a, b, max_fpr=MAX_FPR), var_list=[all_y_trues, all_y_preds])
print('########## CI95', auc_ci95, p_auc_ci95, 'official score', official_score, 'auc/pauc jack', auc_jack, pauc_jack)
csv_lines.append(["official score ci95", "", str(numpy.mean([auc_ci95, p_auc_ci95]))])
csv_lines.append([])
# output results
os.makedirs(result_dir, exist_ok=True)
result_file_path = "{result_dir}/{target_dir}_result.csv".format(result_dir=result_dir,
target_dir=os.path.basename(target_dir))
print("results -> {}".format(result_file_path))
save_csv(save_file_path=result_file_path, save_data=csv_lines)
result_file_path = "{result_dir}/{target_dir}/official_score.csv".format(result_dir=additional_result_dir,
target_dir=os.path.basename(target_dir))
if out_all:
print("official score -> {}".format(result_file_path))
official_score_df.to_csv(result_file_path)
return 0, official_score_df, auc_df, score_df, paper_official_score_df
##############################################################################
# main
##############################################################################
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--teams_root_dir", type=str, default="./teams",
help="Directory containing team results."+
"./<team name> 'Directory containing anomaly score and decision result'")
parser.add_argument("--result_dir", type=str, default="./teams_result",
help="./teams_result 'Directory created after execution.'")
parser.add_argument("--additional_result_dir", type=str, default="./teams_additional_result",
help="./teams_result 'Directory created after execution.'")
parser.add_argument("--dir_depth", type=int, default=2,
help="what depth to search '--teams_root_dir' using glob."+
"Example, if --dir_depth=2, then 'glob.glob(<teams_root_dir>/*/*)'")
parser.add_argument("--out_all", type=strtobool, default=False,
help="if 'out_true=True`, export supplemental data.")
parser.add_argument("--seed", type=int, default=13711)
parser.add_argument('-tag','--model_name_suffix',type=str, default='_id(0_)',
help='Add a word to file name')
args = parser.parse_args()
teams_root_dir = args.teams_root_dir
result_dir = args.result_dir
additional_result_dir = args.additional_result_dir
out_all = args.out_all
Path(result_dir).mkdir(parents=True, exist_ok=True)
if out_all:
Path(additional_result_dir).mkdir(parents=True, exist_ok=True)
machine_types = get_machines(load_dir=GROUND_TRUTH_DATA_DIR)
section_ids = get_section_ids(target_dir=GROUND_TRUTH_DATA_DIR)
team_dirs = list(numpy.sort(glob.glob(teams_root_dir + "/*" * args.dir_depth)))
# if os.path.isdir(result_dir):
# print("the result directory exist")
# sys.exit(-1)
teams_official_score_df = pd.DataFrame(
columns=OFFICIAL_SCORE_COLUMNS,
)
multi_index = pd.MultiIndex.from_product([[],[]], names=["System", "metric"])
teams_paper_official_score_df = pd.DataFrame(
index=multi_index,
columns=PAPER_OFFICIAL_SCORE_COLUMNS
)
teams_auc_df = {} # AUC for each section id
teams_score_df = {} # anomary score for each section id
for section_id in section_ids:
teams_auc_df[section_id] = pd.DataFrame(
columns=OFFICIAL_SCORE_COLUMNS,
)
teams_score_df[section_id] = pd.DataFrame(
columns=SCORE_COLUMNS,
)
for idx, team_dir in enumerate(team_dirs):
print("[{idx}/{total}] team name : {team_dir}".format(team_dir=os.path.basename(team_dir),
idx=idx+1,
total=len(team_dirs)))
if os.path.isdir(team_dir):
normal_end_flag, official_score_df, auc_df, score_df, paper_official_score_df = output_result(
team_dir,
machine_types,
section_ids,
result_dir=result_dir,
additional_result_dir=additional_result_dir,
seed=args.seed,
tag=args.model_name_suffix,
out_all=out_all,
)
if normal_end_flag == -1:
print("abnormal termination")
sys.exit(-1)
if type(official_score_df) == pd.core.frame.DataFrame:
teams_official_score_df = pd.concat([teams_official_score_df, official_score_df])
if type(paper_official_score_df) == pd.core.frame.DataFrame:
teams_paper_official_score_df = pd.concat([teams_paper_official_score_df, paper_official_score_df])
# concat all teams auc
if auc_df is not None:
for section_id in section_ids:
if type(auc_df[section_id]) == pd.core.frame.DataFrame:
teams_auc_df[section_id] = pd.concat([teams_auc_df[section_id], auc_df[section_id]])
# concat all teams score
if score_df is not None:
for section_id in section_ids:
if type(score_df[section_id]) == pd.core.frame.DataFrame:
teams_score_df[section_id] = pd.concat([teams_score_df[section_id], score_df[section_id]])
else:
print("{} is not directory.".format(team_dir))
result_file_path = "{result_dir}/{target_dir}_official_score.csv".format(result_dir=additional_result_dir,
target_dir=os.path.basename(teams_root_dir))
if out_all:
print(f"teams result -> {result_file_path}")
teams_official_score_df.to_csv(result_file_path)
# export paper score
result_file_path = "{result_dir}/{target_dir}_official_score_paper".format(result_dir=additional_result_dir,
target_dir=os.path.basename(teams_root_dir))
if out_all:
print(f"teams result -> {result_file_path}.csv")
teams_paper_official_score_df.to_csv(f"{result_file_path}.csv")
# print(f"teams result -> {result_file_path}_raund.csv")
# teams_paper_official_score_df.astype(numpy.float64).to_csv(f"{result_file_path}_raund.csv", float_format='%.4f')
# print(f"teams result -> {result_file_path}.txt")
# teams_paper_official_score_df.to_latex(f"{result_file_path}.txt")
for section_id in section_ids:
result_file_path = "{result_dir}/{target_dir}_{section_id}_auc.csv".format(result_dir=additional_result_dir,
target_dir=os.path.basename(teams_root_dir),
section_id=section_id)
if out_all:
print(f"AUC section {section_id} -> {result_file_path}")
teams_auc_df[section_id].to_csv(result_file_path)
result_file_path = "{result_dir}/{target_dir}_{section_id}_score.csv".format(result_dir=additional_result_dir,
target_dir=os.path.basename(teams_root_dir),
section_id=section_id)
if out_all:
print(f"AUC section {section_id} -> {result_file_path}")
teams_score_df[section_id].to_csv(result_file_path)