-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_GMM.py
executable file
·843 lines (515 loc) · 47.7 KB
/
model_GMM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
#### MAIN
from itertools import combinations
import collections
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from base import *
EPS = 1e-4
class GMM(tf.keras.Model):
def __init__(self, n_params):
super(GMM, self).__init__()
self.n_params = n_params
n_recog_y, n_gener_y = self.n_params['n_recog_y'], self.n_params['n_gener_y']
n_recog_kappa = self.n_params['n_recog_kappa']
n_z, n_x, n_y, n_kappa = self.n_params['n_z'], self.n_params['n_x'], self.n_params['n_y'], self.n_params['n_kappa'],
n_site = self.n_params['n_site']
n_mixture = self.n_params['n_mixture']
n_kappa_max = np.max(n_kappa)
self.n_kappa_masks = tf.stack([tf.concat([tf.ones(n_kappa[site]), tf.zeros(n_kappa_max - n_kappa[site])], axis=-1) for site in range(n_site)])
self.learning_rate = self.n_params['learning_rate']
# Define eta_varialbes in cpu
with tf.device('/cpu:0'):
self.recog_x_trans_mat_values = self.add_weight(name='recog_x_trans_mat_values', shape=(n_x**2, ), initializer=tf.constant_initializer((1 - EPS) * np.eye(n_x).flatten()))
self.recog_x_trans_mean = self.add_weight(name='recog_x_trans_mean', shape=(n_x, ), initializer=tf.constant_initializer(np.zeros(n_x)))
self.recog_x_init_prec_values = self.add_weight(name='recog_x_init_prec_values', shape=(n_x*(n_x+1)//2, ), initializer=tf.constant_initializer(np.zeros(n_x*(n_x+1)//2)))
self.recog_x_init_mean = self.add_weight(name='recog_x_init_mean', shape=(n_x, ), initializer=tf.constant_initializer(np.zeros(n_x)))
self.gener_x_trans_mat_values = self.add_weight(name='gener_x_trans_mat_values', shape=(n_x**2, ), initializer=tf.constant_initializer((1 - EPS) * np.eye(n_x).flatten()))
self.gener_x_trans_mean = self.add_weight(name='gener_x_trans_mean', shape=(n_x, ), initializer=tf.constant_initializer(np.zeros(n_x)))
self.gener_x_init_prec_values = self.add_weight(name='gener_x_init_prec_values', shape=(n_x*(n_x+1)//2, ), initializer=tf.constant_initializer(np.zeros(n_x*(n_x+1)//2)))
self.gener_x_init_mean = self.add_weight(name='gener_x_init_mean', shape=(n_x, ), initializer=tf.constant_initializer(np.zeros(n_x)))
self.gener_x_trans_prec_values = self.add_weight(name='gener_x_affine_values', shape=(n_x*(n_x+1)//2, ), initializer=tf.constant_initializer(np.hstack([np.ones(n_x), np.zeros(n_x*(n_x+1)//2-n_x)])))
# Define eta_varialbes in gpu
self.x_affine_values = self.add_weight(name='x_affine_values', shape=(n_x*(n_x+1)//2, ), initializer=tf.constant_initializer(np.hstack([np.ones(n_x) * tf.math.log(1 - (1 - EPS) ** 2), np.zeros(n_x*(n_x+1)//2-n_x)])))
self.recog_kappa_g_mean = self.add_weight(name='recog_kappa_g_mean', shape=(n_x, ), initializer=tf.constant_initializer(np.zeros(n_x)))
self.recog_kappa_g_prec_values = self.add_weight(name='recog_kappa_g_prec_values', shape=(n_x*(n_x+1)//2, ), initializer=tf.constant_initializer(np.zeros(n_x*(n_x+1)//2)))
self.recog_y = tf.keras.models.Sequential([tf.keras.layers.Dense(n_layer, activation='leaky_relu', kernel_initializer='he_uniform') for n_layer in n_recog_y])
self.recog_y_mean, self.recog_y_prec_values = tf.keras.Sequential([tf.keras.layers.Activation('leaky_relu'), tf.keras.layers.Dense(n_x)]), tf.keras.Sequential([clip_by_value, TriangularDense(n_x)])
self.recog_kappa = tf.keras.models.Sequential([ParallelDense(n_layer, activation='leaky_relu', kernel_initializer='he_uniform') for n_layer in n_recog_kappa])
self.recog_kappa_mean, self.recog_kappa_prec_values = ParallelDense(n_x), tf.keras.Sequential([clip_by_value, ParallelTriangularDense(n_x)])
self.gener_x_mean, self.gener_x_prec_values = tf.Variable(tf.random.normal(shape=(n_mixture, n_site, n_x))), tf.Variable(tf.random.normal(shape=(n_mixture, n_site, n_x*(n_x+1)//2)))
self.gener_kappa_mean, self.gener_kappa_prec_values = tf.Variable(tf.random.normal(shape=(n_mixture, n_site, n_kappa_max))), tf.Variable(tf.random.normal(shape=(n_mixture, n_site, n_kappa_max)))
self.gener_log_weights = tf.Variable(tf.zeros((n_mixture, n_site)))
self.gener_y = tf.keras.models.Sequential([tf.keras.layers.Dense(n_layer, activation='leaky_relu', kernel_initializer='he_uniform') for n_layer in n_gener_y])
self.gener_y_mean, self.gener_y_prec_values = tf.keras.layers.Dense(n_y), tf.keras.Sequential([clip_by_value, tf.keras.layers.Dense(n_y)])
self.log_lambda = tf.Variable(tf.zeros(n_site))
self.recog_y.build((None, None, n_y)), self.recog_y_mean.build((None, None, n_recog_y[-1])), self.recog_y_prec_values.build((None, None, n_recog_y[-1]))
self.recog_kappa.build((None, n_site, n_kappa_max)), self.recog_kappa_mean.build((None, n_site, n_recog_kappa[-1])), self.recog_kappa_prec_values.build((None, n_site, n_recog_kappa[-1]))
self.gener_y.build((None, None, n_x)), self.gener_y_mean.build((None, None, n_gener_y[-1])), self.gener_y_prec_values.build((None, None, n_gener_y[-1]))
recog_y_layers = [self.recog_y, self.recog_y_mean, self.recog_y_prec_values]
recog_kappa_layers = [self.recog_kappa, self.recog_kappa_mean, self.recog_kappa_prec_values]
gener_y_layers = [self.gener_y, self.gener_y_mean, self.gener_y_prec_values]
self.lambda_variables = [self.gener_x_mean, self.gener_x_prec_values, self.gener_kappa_mean, self.gener_kappa_prec_values, self.gener_log_weights, self.log_lambda]
self.eta_variables_3 = sum([layer.variables for layer in gener_y_layers], [])
with tf.device('/cpu:0'):
self.eta_variables_2 = [self.recog_x_init_mean, self.recog_x_init_prec_values, self.recog_x_trans_mat_values, self.gener_x_init_mean, self.gener_x_init_prec_values, self.gener_x_trans_mat_values, self.gener_x_trans_mean, self.gener_x_trans_prec_values]
self.eta_variables_1 = sum([layer.variables for layer in recog_y_layers + recog_kappa_layers], []) + [self.recog_kappa_g_mean, self.recog_kappa_g_prec_values]
self.lambda_optimizer = tf.keras.optimizers.Adam(self.learning_rate)
self.eta_optimizer_3 = tf.keras.optimizers.Adam(self.learning_rate)
with tf.device('/cpu:0'):
self.eta_optimizer_2 = tf.keras.optimizers.Adam(self.learning_rate)
self.eta_optimizer_1 = tf.keras.optimizers.Adam(self.learning_rate)
self._train, self._eval_log_likelihood, self._eval_log_likelihood_x, self._decode_init, self._decode_update, self._assign_log_lambda = _train, _eval_log_likelihood, _eval_log_likelihood_x, _decode_init, _decode_update, _assign_log_lambda
def assign_log_lambda(self, batch_kappas, batch_masks, batch_ys, n_monte):
self._assign_log_lambda(self, batch_kappas, batch_masks, batch_ys, n_monte)
def train(self, kappas_padded, masks, ys_padded, n_monte):
return self._train(self, kappas_padded, masks, ys_padded, n_monte)
def eval_log_likelihood(self, kappas, masks, y, log_scale_train, log_scale_eval, n_monte):
return self._eval_log_likelihood(self, kappas, masks, y, log_scale_train, log_scale_eval, n_monte)
def eval_log_likelihood_x(self, kappas, masks, y, log_scale_train, log_scale_eval, n_monte):
return self._eval_log_likelihood_x(self, kappas, masks, y, log_scale_train, log_scale_eval, n_monte)
def decode_init(self, kappas, masks, log_scale_train, log_scale_eval, n_monte, n_iter=0.):
return self._decode_init(self, kappas, masks, log_scale_train, log_scale_eval, n_monte, n_iter)
def decode_update(self, x_current_means, x_current_covs, kappas, masks, log_scale_train, log_scale_eval, n_monte):
return self._decode_update(self, x_current_means, x_current_covs, kappas, masks, log_scale_train, log_scale_eval, n_monte)
def decode(self, kappas, masks, log_scale_train, log_scale_eval, n_monte, n_iter_init, n_iter_update):
y_smoothed_means, y_smoothed_covs, x_smoothed_means, x_smoothed_covs = self.decode_init(kappas, masks, log_scale_train, log_scale_eval, n_monte, n_iter_init)
for i in range(n_iter_update):
y_smoothed_means, y_smoothed_covs, x_smoothed_means, x_smoothed_covs = self.decode_update(x_smoothed_means, x_smoothed_covs, kappas, masks, log_scale_train, log_scale_eval, n_monte)
return y_smoothed_means, y_smoothed_covs, x_smoothed_means, x_smoothed_covs
def _train(model, batch_kappas, batch_masks, batch_ys, n_monte):
n_batch, R = tf.shape(batch_ys)[0], tf.shape(batch_ys)[1]
n_x = model.n_params['n_x']
n_site = model.n_params['n_site']
n_compile = model.n_params['n_compile']
batch_ns = tf.math.count_nonzero(tf.reduce_sum(batch_masks, (2, 3)), axis=-1)
batch_us = calculateUpperBound(batch_ns, n_compile)
def _train_batch(state, elem):
kappas, masks, u, y = elem
epsx = tf.random.normal((R, 1, n_x), dtype=tf.float32)
y_not_nan, is_not_nan, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde = compute_eta_loss_1(model, kappas, masks, y)
with tf.device('/cpu:0'):
_, x = compute_eta_loss_2(model, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde, epsx)
eta_cost_3, x_grad_1 = _apply_eta_gradients_3(model, y_not_nan, is_not_nan, x)
lambda_recog_cost, lambda_gener_cost, x_grad_2 = _apply_lambda_gradients(model, kappas[:u], masks[:u], x, n_monte)
x_grad = x_grad_1 + x_grad_2
with tf.device('/cpu:0'):
eta_cost_2, x_affine_diag_grad, x_affine_tri_grad, recog_x_prec_tilde_grad, recog_x_mean_dot_prec_tilde_grad = _apply_eta_gradients_2(model, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde, epsx, x_grad)
eta_cost_1 = _apply_eta_gradients_1(model, kappas, masks, y, x_affine_diag_grad, x_affine_tri_grad, recog_x_prec_tilde_grad, recog_x_mean_dot_prec_tilde_grad)
cost = eta_cost_1 + eta_cost_2 + eta_cost_3 + lambda_recog_cost + lambda_gener_cost
return cost
costs = tf.scan(_train_batch, elems=(batch_kappas, batch_masks, batch_us, batch_ys), initializer=0.)
avg_cost = tf.reduce_mean(costs)
return avg_cost
@tf.function(jit_compile=True, reduce_retracing=True)
def _apply_lambda_gradients(model, kappas, masks, x, n_monte):
R = tf.shape(x)[0]
n_site = model.n_params['n_site']
with tf.GradientTape(persistent=True) as tape:
tape.watch(x)
log_lambda = model.log_lambda
lambda_loss, x_mean, x_prec = _compute_lambda_loss(model, matmul_mask_tranpose_vec(masks, x), kappas, n_monte)
lambda_g_loss, x_g_mean, x_g_prec = _compute_lambda_g_loss(model, tf.repeat(x, n_site, axis=1), n_monte)
lambda_weights = tf.stop_gradient(tf.exp(tf.math.log_softmax(lambda_loss, axis=1)))
lambda_all = tf.reduce_sum(tf.math.multiply_no_nan(log_lambda + lambda_loss, lambda_weights), axis=1)
lambda_g_weights = tf.stop_gradient(tf.exp(log_lambda + tf.reduce_logsumexp(lambda_g_loss, axis=1, keepdims=True) + tf.math.log_softmax(lambda_g_loss, axis=1)))
lambda_g_all = tf.reduce_sum(tf.math.multiply_no_nan(log_lambda + lambda_g_loss, lambda_g_weights), axis=1)
lambda_cost = - tf.reduce_sum(lambda_all * tf.reduce_sum(masks, axis=1)) + tf.reduce_sum(lambda_g_all)
lambda_gradients = tape.gradient(lambda_cost, model.lambda_variables)
vec = - tf.linalg.matvec(x_prec, matmul_mask_tranpose_vec(masks, x)[:, tf.newaxis] - x_mean)
x_grad = tf.reduce_sum(tf.math.multiply_no_nan(vec, lambda_weights[:, :, :, tf.newaxis]), axis=1)
vec_g = - tf.linalg.matvec(x_g_prec, x[:, tf.newaxis] - x_g_mean)
x_g_grad = tf.reduce_sum(tf.math.multiply_no_nan(vec_g, lambda_g_weights[:, :, :, tf.newaxis]), axis=1)
x_grad = tf.reduce_sum(- matmul_mask_vec(masks, x_grad) + x_g_grad, axis=1, keepdims=True)
if not tf.math.reduce_any([tf.math.reduce_any([tf.math.is_nan(grad), tf.math.is_inf(grad)]) for grad in lambda_gradients if grad is not None]):
model.lambda_optimizer.apply_gradients(zip(lambda_gradients, model.lambda_variables))
return lambda_cost, lambda_cost, x_grad
def _compute_lambda_loss(model, x, kappas, n_monte):
n = tf.shape(x)[0]
n_z, n_x = model.n_params['n_z'], model.n_params['n_x']
n_site = model.n_params['n_site']
n_kappa_max = tf.reduce_max(model.n_params['n_kappa'])
x_mean, x_prec_values = model.gener_x_mean, model.gener_x_prec_values
x_prec_diag, x_prec_tri = x_prec_values[:, :, :n_x], fill_triangular(x_prec_values[:, :, n_x:])
kappa_mean, kappa_prec_values = model.gener_kappa_mean, model.gener_kappa_prec_values
kappa_prec_diag = kappa_prec_values[:, :, :n_kappa_max]
reconstr_x_loss = - 0.5 * n_x * tf.math.log(2 * np.pi) + 0.5 * tf.reduce_sum(x_prec_diag, -1) - 0.5 * tf.reduce_sum(tf.square(tf.linalg.matvec(tf.linalg.matrix_transpose(x_prec_tri), (tf.stop_gradient(x)[:, tf.newaxis] - x_mean)) * tf.exp(0.5 * x_prec_diag)), -1)
reconstr_kappa_loss = tf.reduce_sum(tf.math.multiply_no_nan(- 0.5 * tf.math.log(2 * np.pi) + 0.5 * kappa_prec_diag - 0.5 * tf.square((kappas[:, tf.newaxis] - kappa_mean) * tf.exp(0.5 * kappa_prec_diag)), model.n_kappa_masks), -1)
latent_loss = tf.math.log_softmax(model.gener_log_weights, axis=0)
lambda_loss = reconstr_x_loss + reconstr_kappa_loss + latent_loss
x_prec = tf.matmul(x_prec_tri * tf.exp(0.5 * x_prec_diag)[:, :, tf.newaxis], tf.linalg.matrix_transpose(x_prec_tri * tf.exp(0.5 * x_prec_diag)[:, :, tf.newaxis]))
return lambda_loss, x_mean, x_prec
def _compute_lambda_g_loss(model, x, n_monte):
n = tf.shape(x)[0]
n_z, n_x = model.n_params['n_z'], model.n_params['n_x']
n_site = model.n_params['n_site']
x_mean, x_prec_values = model.gener_x_mean, model.gener_x_prec_values
x_prec_diag, x_prec_tri = x_prec_values[:, :, :n_x], fill_triangular(x_prec_values[:, :, n_x:])
reconstr_x_loss = - 0.5 * n_x * tf.math.log(2 * np.pi) + 0.5 * tf.reduce_sum(x_prec_diag, -1) - 0.5 * tf.reduce_sum(tf.square(tf.linalg.matvec(tf.linalg.matrix_transpose(x_prec_tri), (tf.stop_gradient(x)[:, tf.newaxis] - x_mean)) * tf.exp(0.5 * x_prec_diag)), -1)
latent_loss = tf.math.log_softmax(model.gener_log_weights, axis=0)
lambda_g_loss = reconstr_x_loss + latent_loss
x_prec = tf.matmul(x_prec_tri * tf.exp(0.5 * x_prec_diag)[:, :, tf.newaxis], tf.linalg.matrix_transpose(x_prec_tri * tf.exp(0.5 * x_prec_diag)[:, :, tf.newaxis]))
return lambda_g_loss, x_mean, x_prec
@tf.function(experimental_compile=True)
def _apply_eta_gradients_3(model, y_not_nan, is_not_nan, x):
with tf.GradientTape(persistent=True) as tape:
tape.watch(x)
eta_cost_3 = _compute_eta_loss_3(model, y_not_nan, is_not_nan, x)
x_grad = tape.gradient(eta_cost_3, x)
eta_gradients_3 = tape.gradient(eta_cost_3, model.eta_variables_3)
if not tf.math.reduce_any([tf.math.reduce_any([tf.math.is_nan(grad), tf.math.is_inf(grad)]) for grad in eta_gradients_3 if grad is not None]):
model.eta_optimizer_3.apply_gradients(zip(eta_gradients_3, model.eta_variables_3))
return eta_cost_3, x_grad
@tf.function(experimental_compile=True)
def _apply_eta_gradients_2(model, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde, epsx, x_grad):
with tf.GradientTape(persistent=True) as tape:
tape.watch([x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde])
eta_cost_2, x = _compute_eta_loss_2(model, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde, epsx)
eta_cost_2 += tf.reduce_sum(x_grad * x)
x_affine_diag_grad, x_affine_tri_grad, recog_x_prec_tilde_grad, recog_x_mean_dot_prec_tilde_grad = tape.gradient(eta_cost_2, [x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde])
eta_gradients_2 = tape.gradient(eta_cost_2, model.eta_variables_2)
if not tf.math.reduce_any([tf.math.reduce_any([tf.math.is_nan(grad), tf.math.is_inf(grad)]) for grad in eta_gradients_2 if grad is not None]):
model.eta_optimizer_2.apply_gradients(zip(eta_gradients_2, model.eta_variables_2))
return eta_cost_2, x_affine_diag_grad, x_affine_tri_grad, recog_x_prec_tilde_grad, recog_x_mean_dot_prec_tilde_grad
@tf.function(experimental_compile=True)
def _apply_eta_gradients_1(model, kappas, masks, y, x_affine_diag_grad, x_affine_tri_grad, recog_x_prec_tilde_grad, recog_x_mean_dot_prec_tilde_grad):
with tf.GradientTape(persistent=True) as tape:
_, _, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde = _compute_eta_loss_1(model, kappas, masks, y)
eta_cost_1 = tf.reduce_sum(x_affine_diag_grad * x_affine_diag) + tf.reduce_sum(x_affine_tri_grad * x_affine_tri) + tf.reduce_sum(recog_x_prec_tilde_grad * recog_x_prec_tilde) + tf.reduce_sum(recog_x_mean_dot_prec_tilde_grad * recog_x_mean_dot_prec_tilde)
eta_gradients_1 = tape.gradient(eta_cost_1, model.eta_variables_1)
if not tf.math.reduce_any([tf.math.reduce_any([tf.math.is_nan(grad), tf.math.is_inf(grad)]) for grad in eta_gradients_1 if grad is not None]):
model.eta_optimizer_1.apply_gradients(zip(eta_gradients_1, model.eta_variables_1))
return eta_cost_1
def _compute_eta_loss_1(model, kappas, masks, y):
R = tf.shape(y)[0]
n_x, n_y = model.n_params['n_x'], model.n_params['n_y']
n_site = model.n_params['n_site']
is_not_nan = tf.dtypes.cast(tf.math.logical_not(tf.reduce_any(tf.math.is_nan(y), -1, keepdims=True)), dtype=tf.float32)
y_not_nan = tf.math.multiply_no_nan(y, tf.dtypes.cast(tf.math.logical_not(tf.math.is_nan(y)), dtype=tf.float32))
x_affine_diag, x_affine_tri = model.x_affine_values[:n_x], fill_triangular(model.x_affine_values[n_x:])
rx = model.recog_y(y_not_nan)
recog_x_mean, recog_x_prec_values = model.recog_y_mean(rx), model.recog_y_prec_values(rx)
recog_x_prec_diag, recog_x_prec_tri = recog_x_prec_values[:, :, :n_x], fill_triangular(recog_x_prec_values[:, 0, n_x:])
recog_x_prec_tri_tilde = tf.exp(0.5 * x_affine_diag[:, tf.newaxis] + 0.5 * recog_x_prec_diag) * tf.linalg.matmul(x_affine_tri, recog_x_prec_tri)
recog_x_prec_tilde = tf.matmul(recog_x_prec_tri_tilde, tf.linalg.matrix_transpose(recog_x_prec_tri_tilde))
recog_x_mean_dot_prec_tilde = tf.matmul(tf.matmul(recog_x_mean, recog_x_prec_tri) * tf.exp(0.5 * recog_x_prec_diag), tf.linalg.matrix_transpose(recog_x_prec_tri_tilde))
recog_x_prec_tilde, recog_x_mean_dot_prec_tilde = tf.math.multiply_no_nan(recog_x_prec_tilde, is_not_nan), tf.math.multiply_no_nan(recog_x_mean_dot_prec_tilde, is_not_nan)
rlambda = model.recog_kappa(kappas)
lambda_mean, lambda_prec_values = model.recog_kappa_mean(rlambda), model.recog_kappa_prec_values(rlambda)
lambda_prec_diag, lambda_prec_tri = lambda_prec_values[:, :, :n_x], fill_triangular(lambda_prec_values[:, :, n_x:])
lambda_prec_tri_tilde = tf.exp(0.5 * x_affine_diag[:, tf.newaxis] + 0.5 * lambda_prec_diag[:, :, tf.newaxis]) * tf.matmul(x_affine_tri, lambda_prec_tri)
lambda_prec_tilde = tf.matmul(lambda_prec_tri_tilde, tf.linalg.matrix_transpose(lambda_prec_tri_tilde))
lambda_mean_dot_prec_tilde = tf.linalg.matvec(lambda_prec_tri_tilde, tf.linalg.matvec(tf.linalg.matrix_transpose(lambda_prec_tri), lambda_mean) * tf.exp(0.5 * lambda_prec_diag))
lambda_g_mean = tf.reshape(model.recog_kappa_g_mean, [1, n_x])
lambda_g_prec_diag, lambda_g_prec_tri = model.recog_kappa_g_prec_values[:n_x], fill_triangular(model.recog_kappa_g_prec_values[n_x:])
lambda_g_prec_tri_tilde = tf.exp(0.5 * x_affine_diag[:, tf.newaxis] + 0.5 * lambda_g_prec_diag) * tf.linalg.matmul(x_affine_tri, lambda_g_prec_tri)
lambda_g_prec_tilde = tf.matmul(lambda_g_prec_tri_tilde, tf.linalg.matrix_transpose(lambda_g_prec_tri_tilde))
lambda_g_mean_dot_prec_tilde = tf.matmul(tf.matmul(lambda_g_mean, lambda_g_prec_tri) * tf.exp(0.5 * lambda_g_prec_diag), tf.linalg.matrix_transpose(lambda_g_prec_tri_tilde))
recog_x_prec_tilde += tf.reduce_sum(matmul_mask_mat(masks, lambda_prec_tilde), axis=1) + lambda_g_prec_tilde
recog_x_mean_dot_prec_tilde += tf.reduce_sum(matmul_mask_vec(masks, lambda_mean_dot_prec_tilde), axis=1, keepdims=True) + lambda_g_mean_dot_prec_tilde
return y_not_nan, is_not_nan, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde
def _compute_eta_loss_2(model, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde, epsx):
n_x, n_y = model.n_params['n_x'], model.n_params['n_y']
n_site = model.n_params['n_site']
R = tf.shape(recog_x_prec_tilde)[0]
recog_x_trans_mat = tf.reshape(model.recog_x_trans_mat_values, [n_x, n_x])
recog_x_trans_mean = tf.reshape(model.recog_x_trans_mean, (1, n_x))
recog_x_trans_prec = tf.eye(n_x)
recog_x_init_prec_diag, recog_x_init_prec_tri = model.recog_x_init_prec_values[:n_x], fill_triangular(model.recog_x_init_prec_values[n_x:])
recog_x_init_prec = tf.matmul(recog_x_init_prec_tri * tf.exp(0.5 * recog_x_init_prec_diag), tf.transpose(recog_x_init_prec_tri * tf.exp(0.5 * recog_x_init_prec_diag)))
recog_x_init_mean = tf.reshape(model.recog_x_init_mean, (1, n_x))
recog_x_grads = tf.concat([recog_x_mean_dot_prec_tilde[:1] + tf.matmul(recog_x_init_mean, recog_x_init_prec) - tf.matmul(recog_x_trans_mean, tf.transpose(recog_x_trans_mat)), recog_x_mean_dot_prec_tilde[1:-1] + recog_x_trans_mean - tf.matmul(recog_x_trans_mean, tf.transpose(recog_x_trans_mat)), recog_x_mean_dot_prec_tilde[-1:] + recog_x_trans_mean], axis=0)
x_cholesky_diags, x_cholesky_off_diags, vs_tilde, ws_tilde = _cholesky_update(recog_x_prec_tilde, recog_x_grads, recog_x_trans_mat, recog_x_trans_prec, recog_x_init_prec, epsx)
x_tilde = vs_tilde + ws_tilde
gener_x_trans_mat = tf.reshape(model.gener_x_trans_mat_values, [n_x, n_x])
gener_x_trans_mean = tf.reshape(model.gener_x_trans_mean, (1, n_x))
gener_x_trans_prec_diag, gener_x_trans_prec_tri = model.gener_x_trans_prec_values[:n_x], fill_triangular(model.gener_x_trans_prec_values[n_x:])
gener_x_init_prec_diag, gener_x_init_prec_tri = model.gener_x_init_prec_values[:n_x], fill_triangular(model.gener_x_init_prec_values[n_x:])
gener_x_init_mean = tf.reshape(model.gener_x_init_mean, (1, n_x))
latent_loss = - tf.reduce_sum(tf.math.log(tf.linalg.diag_part(x_cholesky_diags)), -1, keepdims=True) + 0.5 * tf.reduce_sum(tf.square(epsx), -1)
latent_loss += tf.concat([0.5 * tf.reduce_sum(gener_x_init_prec_diag) - 0.5 * tf.reduce_sum(tf.square(tf.matmul(x_tilde[:1] - gener_x_init_mean, gener_x_init_prec_tri) * tf.exp(0.5 * gener_x_init_prec_diag)), -1), 0.5 * tf.reduce_sum(gener_x_trans_prec_diag) - 0.5 * tf.reduce_sum(tf.square(tf.matmul(x_tilde[1:] - tf.matmul(x_tilde[:-1], gener_x_trans_mat) - gener_x_trans_mean, gener_x_trans_prec_tri) * tf.exp(0.5 * gener_x_trans_prec_diag)), -1)], axis=0)
eta_cost_2 = - tf.reduce_sum(latent_loss)
x = tf.linalg.matrix_transpose(tf.matmul(tf.transpose(x_affine_tri), tf.linalg.matrix_transpose(x_tilde * tf.exp(0.5 * x_affine_diag))))
return eta_cost_2, x
def _compute_eta_loss_3(model, y_not_nan, is_not_nan, x):
n_x, n_y = model.n_params['n_x'], model.n_params['n_y']
n_site = model.n_params['n_site']
gy = model.gener_y(x)
y_mean,y_prec_diag = model.gener_y_mean(gy), model.gener_y_prec_values(gy)
reconstr_y_loss = tf.reduce_sum(- 0.5 * tf.math.log(2 * np.pi) + 0.5 * y_prec_diag - 0.5 * tf.square((y_not_nan - y_mean) * tf.exp(0.5 * y_prec_diag)) , -1)
reconstr_y_loss = tf.math.multiply_no_nan(reconstr_y_loss, tf.squeeze(is_not_nan, -1))
eta_cost_3 = - tf.reduce_sum(reconstr_y_loss)
return eta_cost_3
compute_eta_loss_1 = tf.function(_compute_eta_loss_1, experimental_compile=True, reduce_retracing=True)
compute_eta_loss_2 = tf.function(_compute_eta_loss_2, experimental_compile=True, reduce_retracing=True)
compute_eta_loss_3 = tf.function(_compute_eta_loss_3, experimental_compile=True, reduce_retracing=True)
compute_lambda_loss = tf.function(_compute_lambda_loss, experimental_compile=True, reduce_retracing=True)
compute_lambda_g_loss = tf.function(_compute_lambda_g_loss, experimental_compile=True, reduce_retracing=True)
def compute_lambda_loss_split(model, x, kappas, n_monte, split_num=1):
split_size = tf.shape(kappas)[0] // split_num + 1
lambda_loss = []
for i in range(split_num):
x_splited, kappas_splited = x[i*split_size:(i+1)*split_size], kappas[i*split_size:(i+1)*split_size]
lambda_loss_splited, _, _ = compute_lambda_loss(model, x_splited, kappas_splited, n_monte)
lambda_loss.append(lambda_loss_splited)
lambda_loss = tf.concat(lambda_loss, axis=0)
return lambda_loss
def compute_lambda_g_loss_split(model, x, n_monte, split_num=1):
split_size = tf.shape(x)[0] // split_num + 1
lambda_g_loss = []
for i in range(split_num):
x_splited = x[i*split_size:(i+1)*split_size]
lambda_g_loss_splited, _, _ = compute_lambda_g_loss(model, x_splited, n_monte)
lambda_g_loss.append(lambda_g_loss_splited)
lambda_g_loss = tf.concat(lambda_g_loss, axis=0)
return lambda_g_loss
@tf.function
def _eval_log_likelihood(model, kappas, masks, y, log_scale_train, log_scale_eval, n_monte):
R = tf.shape(y)[0]
n_x = model.n_params['n_x']
n_site = model.n_params['n_site']
epsx = tf.random.normal((R, 1, n_x), dtype=tf.float32)
y_not_nan, is_not_nan, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde = compute_eta_loss_1(model, kappas, masks, y)
with tf.device('/cpu:0'):
eta_cost_2, x = compute_eta_loss_2(model, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde, epsx)
eta_cost_3 = compute_eta_loss_3(model, y_not_nan, is_not_nan, x)
log_likelihood = - eta_cost_2 - eta_cost_3
log_lambda = model.log_lambda
lambda_loss = compute_lambda_loss_split(model, matmul_mask_tranpose_vec(masks, x), kappas, n_monte, n_site)
lambda_g_loss = compute_lambda_g_loss_split(model, tf.repeat(x, n_site, axis=1), n_monte, n_site)
lambda_scale_all = log_scale_train + tf.reduce_logsumexp(log_lambda + lambda_loss, axis=1)
lambda_g_scale_all = tf.exp(log_scale_train + tf.reduce_logsumexp(log_lambda + lambda_g_loss, axis=1) - log_scale_eval)
log_likelihood += tf.reduce_sum(tf.math.multiply_no_nan(tf.reduce_sum(masks, axis=1), lambda_scale_all)) - tf.reduce_sum(lambda_g_scale_all)
return log_likelihood
@tf.function
def _eval_log_likelihood_x(model, kappas, masks, y, log_scale_train, log_scale_eval, n_monte):
R = tf.shape(y)[0]
n_x = model.n_params['n_x']
n_site = model.n_params['n_site']
epsx = tf.random.normal((R, 1, n_x), dtype=tf.float32)
y_not_nan, is_not_nan, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde = compute_eta_loss_1(model, kappas, masks, y)
with tf.device('/cpu:0'):
eta_cost_2, x = compute_eta_loss_2(model, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde, epsx)
eta_cost_3 = compute_eta_loss_3(model, y_not_nan, is_not_nan, x)
log_likelihood_x = - eta_cost_2 - eta_cost_3
log_lambda = model.log_lambda
lambda_loss = compute_lambda_g_loss_split(model, matmul_mask_tranpose_vec(masks, x), n_monte, n_site)
lambda_g_loss = compute_lambda_g_loss_split(model, tf.repeat(x, n_site, axis=1), n_monte, n_site)
lambda_scale_all = log_scale_train + tf.reduce_logsumexp(log_lambda + lambda_loss, axis=1)
lambda_g_scale_all = tf.exp(log_scale_train + tf.reduce_logsumexp(log_lambda + lambda_g_loss, axis=1) - log_scale_eval)
log_likelihood_x += tf.reduce_sum(tf.math.multiply_no_nan(tf.reduce_sum(masks, axis=1), lambda_scale_all)) - tf.reduce_sum(lambda_g_scale_all)
return log_likelihood_x
def _eval_log_lambda_derivative(model, x, kappas, log_scale_train, n_monte):
n_x = model.n_params['n_x']
lambda_loss, x_mean, x_prec = _compute_lambda_loss(model, x, kappas, n_monte)
weights = tf.math.softmax(lambda_loss, axis=1)
vec = - tf.linalg.matvec(x_prec, x[:, tf.newaxis] - x_mean)
weighted_vec = tf.reduce_sum(weights[:, :, :, tf.newaxis] * vec, axis=1)
grad_log_lambda_x = weighted_vec
hessian_log_lambda_x = - weighted_vec[:, :, tf.newaxis] * weighted_vec[:, :, :, tf.newaxis]
return grad_log_lambda_x, hessian_log_lambda_x
def _eval_lambda_g_derivative(model, x, log_scale_train, n_monte):
n_x = model.n_params['n_x']
n_site = model.n_params['n_site']
log_lambda = model.log_lambda
lambda_g_loss, x_mean, x_prec = _compute_lambda_g_loss(model, x, n_monte)
vec = - tf.linalg.matvec(x_prec, x[:, tf.newaxis] - x_mean)
weights = tf.math.softmax(lambda_g_loss, axis=1)
scale = tf.exp(log_scale_train + log_lambda + tf.reduce_logsumexp(lambda_g_loss, axis=1))
weighted_vec = tf.reduce_sum(weights[:, :, :, tf.newaxis] * vec, axis=1)
grad_lambda_x = scale[:, :, tf.newaxis] * weighted_vec
hessian_lambda_x = scale[:, :, tf.newaxis, tf.newaxis] * (weighted_vec[:, :, tf.newaxis] * weighted_vec[:, :, :, tf.newaxis] + tf.reduce_sum((vec - weighted_vec[:, tf.newaxis])[:, :, :, tf.newaxis] * (vec - weighted_vec[:, tf.newaxis])[:, :, :, :, tf.newaxis] * weights[:, :, :, tf.newaxis, tf.newaxis], axis=1))
return grad_lambda_x, hessian_lambda_x
@tf.function(experimental_compile=True)
def eval_log_lambda_derivative(model, x, kappas, log_scale_train, n_monte):
return _eval_log_lambda_derivative(model, x, kappas, log_scale_train, n_monte)
@tf.function(experimental_compile=True)
def eval_lambda_g_derivative(model, x, log_scale_train, n_monte):
return _eval_lambda_g_derivative(model, x, log_scale_train, n_monte)
def eval_log_lambda_derivative_split(model, x, kappas, log_scale_train, n_monte, split_num=1):
split_size = tf.shape(kappas)[0] // split_num + 1
grad_log_lambda_x, hessian_log_lambda_x = [], []
for i in range(split_num):
x_splited, kappas_splited = x[i*split_size:(i+1)*split_size], kappas[i*split_size:(i+1)*split_size]
grad_log_lambda_x_splited, hessian_log_lambda_x_splited = eval_log_lambda_derivative(model, x_splited, kappas_splited, log_scale_train, n_monte)
grad_log_lambda_x.append(grad_log_lambda_x_splited), hessian_log_lambda_x.append(hessian_log_lambda_x_splited)
grad_log_lambda_x, hessian_log_lambda_x = tf.concat(grad_log_lambda_x, axis=0), tf.concat(hessian_log_lambda_x, axis=0)
return grad_log_lambda_x, hessian_log_lambda_x
def eval_lambda_g_derivative_split(model, x, log_scale_train, n_monte, split_num=1):
split_size = tf.shape(x)[0] // split_num + 1
grad_lambda_x, hessian_lambda_x = [], []
for i in range(split_num):
x_splited = x[i*split_size:(i+1)*split_size]
grad_lambda_x_splited, hessian_lambda_x_splited = eval_lambda_g_derivative(model, x_splited, log_scale_train, n_monte)
grad_lambda_x.append(grad_lambda_x_splited), hessian_lambda_x.append(hessian_lambda_x_splited)
grad_lambda_x, hessian_lambda_x = tf.concat(grad_lambda_x, axis=0), tf.concat(hessian_lambda_x, axis=0)
return grad_lambda_x, hessian_lambda_x
@tf.function
def _decode_init(model, kappas, masks, log_scale_train, log_scale_eval, n_monte, n_iter):
n_site = model.n_params['n_site']
n_kappa_max = tf.reduce_max(model.n_params['n_kappa'])
R = tf.shape(masks)[1]
inds = [tf.boolean_mask(tf.repeat(tf.range(R)[tf.newaxis], tf.shape(masks[:, :, site])[0], axis=0), masks[:, :, site]) for site in range(n_site)]
n_max = tf.reduce_max([tf.reduce_max(tf.unique_with_counts(inds[site])[-1]) for site in range(n_site)])
kappas_ragged = tf.stack([tf.RaggedTensor.from_value_rowids(tf.boolean_mask(tf.squeeze(kappas[:, site]), tf.reduce_sum(masks[:, :, site], axis=1)), inds[site], R).to_tensor(shape=(R, n_max, n_kappa_max)) for site in range(n_site)], axis=2)
masks_ragged = tf.stack([tf.RaggedTensor.from_value_rowids(tf.ones_like(inds[site], dtype=tf.float32), inds[site], R).to_tensor(shape=(R, n_max)) for site in range(n_site)], axis=2)[:, :, tf.newaxis]
n_x, n_y = model.n_params['n_x'], model.n_params['n_y']
kappas_ragged = tf.repeat(kappas_ragged, n_iter, axis=0)
masks_ragged = tf.repeat(masks_ragged, n_iter, axis=0)
updates = tf.reshape(tf.concat([tf.zeros((R, n_iter-1)), tf.ones((R, 1))], axis=1), (R*n_iter, ))
x_filtered_state = collections.namedtuple('x_filtered_state', ['x_filtered_mean', 'x_filtered_prec', 'x_predicted_mean', 'x_predicted_prec'])
x_smoothed_state = collections.namedtuple('x_smoothed_state', ['x_smoothed_mean', 'x_smoothed_cov'])
x_affine_diag, x_affine_tri = model.x_affine_values[:n_x], fill_triangular(model.x_affine_values[n_x:])
x_init_prec_diag, x_init_prec_tri = model.gener_x_init_prec_values[:n_x], fill_triangular(model.gener_x_init_prec_values[n_x:])
x_init_prec = tf.matmul(x_init_prec_tri * tf.exp(0.5 * x_init_prec_diag), tf.transpose(x_init_prec_tri * tf.exp(0.5 * x_init_prec_diag)))
x_init_mean = tf.reshape(model.gener_x_init_mean, (1, n_x))
x_trans_mean = tf.reshape(model.gener_x_trans_mean, (1, n_x))
x_trans_mat = tf.reshape(model.gener_x_trans_mat_values, [n_x, n_x])
x_trans_mat /= tf.nn.relu(tf.reduce_max(tf.abs(tf.linalg.eigvals(x_trans_mat))) - 1.) + 1.
x_trans_prec_diag, x_trans_prec_tri = model.gener_x_trans_prec_values[:n_x], fill_triangular(model.gener_x_trans_prec_values[n_x:])
x_trans_prec = tf.matmul(x_trans_prec_tri * tf.exp(0.5 * x_trans_prec_diag), tf.transpose(x_trans_prec_tri * tf.exp(0.5 * x_trans_prec_diag)))
def _filter_predict(model, x_filtered_mean, x_filtered_prec):
x_predicted_mean, x_predicted_prec = x_trans_mean + tf.matmul(x_filtered_mean, x_trans_mat), tf.linalg.inv(tf.matmul(tf.transpose(x_trans_mat), tf.linalg.solve(x_filtered_prec, x_trans_mat)) + tf.linalg.inv(x_trans_prec))
return x_predicted_mean, x_predicted_prec
def _filter_correct(model, kappa, mask, x_current_mean, x_predicted_mean, x_predicted_prec, log_scale_train, log_scale_eval, n_monte):
x_current_mean_orig = tf.transpose(tf.matmul(tf.transpose(x_affine_tri), tf.transpose(x_current_mean * tf.exp(0.5 * x_affine_diag))))
grad_log_lambda_x, hessian_log_lambda_x = eval_log_lambda_derivative(model, matmul_mask_tranpose_vec(mask, x_current_mean_orig[tf.newaxis]), kappa, log_scale_train, n_monte)
grad_lambda_x, hessian_lambda_x = eval_lambda_g_derivative(model, tf.repeat(x_current_mean_orig[tf.newaxis], n_site, axis=1), log_scale_train, n_monte)
likelihood_grads = tf.squeeze(tf.reduce_sum(- matmul_mask_vec(mask, grad_log_lambda_x) + grad_lambda_x * tf.exp(- log_scale_eval), axis=1, keepdims=True), axis=0)
likelihood_hessians = tf.squeeze(tf.reduce_sum(- matmul_mask_mat(mask, hessian_log_lambda_x) + hessian_lambda_x * tf.exp(- log_scale_eval), axis=1), axis=0)
likelihood_grads_tilde = tf.linalg.matrix_transpose(tf.matmul(x_affine_tri, tf.linalg.matrix_transpose(likelihood_grads))) * tf.exp(0.5 * x_affine_diag)
likelihood_hessians_tilde = tf.exp(0.5 * x_affine_diag[:, tf.newaxis] + 0.5 * x_affine_diag) * tf.matmul(x_affine_tri, tf.linalg.matrix_transpose(tf.matmul(x_affine_tri, likelihood_hessians)))
x_filtered_prec = x_predicted_prec + likelihood_hessians_tilde
x_filtered_mean = x_current_mean + tf.transpose(tf.linalg.solve(x_predicted_prec + likelihood_hessians_tilde, tf.transpose(- likelihood_grads_tilde - tf.linalg.matmul(x_current_mean - x_predicted_mean, x_predicted_prec))))
return x_filtered_mean, x_filtered_prec
def _smooth_update(model, x_predicted_mean, x_predicted_prec, x_filtered_mean, x_filtered_prec, x_next_smoothed_mean, x_next_smoothed_cov):
n_x = model.n_params['n_x']
x_kalman_gain = tf.matmul(tf.linalg.solve(x_filtered_prec, x_trans_mat), x_predicted_prec)
x_smoothed_mean = x_filtered_mean + tf.matmul(x_next_smoothed_mean - x_predicted_mean, tf.transpose(x_kalman_gain))
x_smoothed_cov = tf.linalg.inv(x_filtered_prec + tf.matmul(tf.matmul(x_trans_mat, x_trans_prec), tf.transpose(x_trans_mat))) + tf.matmul(tf.matmul(x_kalman_gain, x_next_smoothed_cov), tf.transpose(x_kalman_gain))
return x_smoothed_mean, x_smoothed_cov
def update_forward_fn(state, elem):
kappa, mask, update = elem
x_filtered_mean, x_filtered_prec = _filter_correct(model, kappa, mask, state.x_filtered_mean, state.x_predicted_mean, state.x_predicted_prec, log_scale_train, log_scale_eval, n_monte)
x_predicted_mean, x_predicted_prec = _filter_predict(model, x_filtered_mean, x_filtered_prec)
return x_filtered_state(x_filtered_mean, x_filtered_prec, x_predicted_mean * update + state.x_predicted_mean * (1 - update), x_predicted_prec * update + state.x_predicted_prec * (1 - update))
def update_backward_fn(state, elem):
x_filtered_mean, x_filtered_prec, x_predicted_mean, x_predicted_prec = elem
x_smoothed_mean, x_smoothed_cov = _smooth_update(model, x_predicted_mean, x_predicted_prec, x_filtered_mean, x_filtered_prec, state.x_smoothed_mean, state.x_smoothed_cov)
return x_smoothed_state(x_smoothed_mean, x_smoothed_cov)
x_filtered_means, x_filtered_precs, x_predicted_means, x_predicted_precs = tf.scan(update_forward_fn, elems=(kappas_ragged, masks_ragged, updates), initializer=x_filtered_state(x_init_mean, x_init_prec, x_init_mean, x_init_prec))
x_filtered_means, x_filtered_precs, x_predicted_means, x_predicted_precs = x_filtered_means[n_iter-1::n_iter], x_filtered_precs[n_iter-1::n_iter], x_predicted_means[n_iter-1::n_iter], x_predicted_precs[n_iter-1::n_iter]
x_smoothed_mean, x_smoothed_cov = x_filtered_means[-1], tf.linalg.inv(x_filtered_precs[-1])
x_smoothed_means, x_smoothed_covs = tf.scan(update_backward_fn, elems=(x_filtered_means[:-1], x_filtered_precs[:-1], x_predicted_means[:-1], x_predicted_precs[:-1]), initializer=x_smoothed_state(x_smoothed_mean, x_smoothed_cov), reverse=True)
x_smoothed_means, x_smoothed_covs = tf.concat([x_smoothed_means, x_smoothed_mean[tf.newaxis]], axis=0), tf.concat([x_smoothed_covs, x_smoothed_cov[tf.newaxis]], axis=0)
x_smoothed_covs_cholesky = tf.linalg.cholesky(x_smoothed_covs)
x_smoothed_means = tf.linalg.matrix_transpose(tf.matmul(tf.transpose(x_affine_tri), tf.linalg.matrix_transpose(x_smoothed_means * tf.exp(0.5 * x_affine_diag))))
x_smoothed_covs_cholesky = tf.matmul(tf.transpose(x_affine_tri), x_smoothed_covs_cholesky * tf.exp(0.5 * x_affine_diag[:, tf.newaxis]))
x_smoothed_covs = tf.matmul(x_smoothed_covs_cholesky, tf.linalg.matrix_transpose(x_smoothed_covs_cholesky))
epsx = tf.random.normal((R, n_monte, n_x))
x = x_smoothed_means + tf.matmul(epsx, tf.linalg.matrix_transpose(x_smoothed_covs_cholesky))
gy = model.gener_y(x)
y_mean, y_prec_diag = model.gener_y_mean(gy), model.gener_y_prec_values(gy)
y_smoothed_means = tf.reduce_mean(y_mean, 1, keepdims=True)
y_smoothed_covs = tf.reduce_mean(tf.matmul((y_smoothed_means - y_mean)[:, :, :, tf.newaxis], (y_smoothed_means - y_mean)[:, :, tf.newaxis]), 1) + tf.reduce_mean(tf.linalg.diag(tf.exp(- y_prec_diag)), axis=1)
return y_smoothed_means, y_smoothed_covs, x_smoothed_means, x_smoothed_covs
@tf.function
def _decode_update(model, x_current_means, x_current_covs, kappas, masks, log_scale_train, log_scale_eval, n_monte):
R = tf.shape(x_current_means)[0]
n_site = model.n_params['n_site']
n_x = model.n_params['n_x']
n_y = model.n_params['n_y']
x_affine_diag, x_affine_tri = model.x_affine_values[:n_x], fill_triangular(model.x_affine_values[n_x:])
x_init_prec_diag, x_init_prec_tri = model.gener_x_init_prec_values[:n_x], fill_triangular(model.gener_x_init_prec_values[n_x:])
x_init_prec = tf.matmul(x_init_prec_tri * tf.exp(0.5 * x_init_prec_diag), tf.transpose(x_init_prec_tri * tf.exp(0.5 * x_init_prec_diag)))
x_init_mean = tf.reshape(model.gener_x_init_mean, (1, n_x))
x_trans_prec_diag, x_trans_prec_tri = model.gener_x_trans_prec_values[:n_x], fill_triangular(model.gener_x_trans_prec_values[n_x:])
x_trans_prec = tf.matmul(x_trans_prec_tri * tf.exp(0.5 * x_trans_prec_diag), tf.transpose(x_trans_prec_tri * tf.exp(0.5 * x_trans_prec_diag)))
x_trans_mean = tf.reshape(model.gener_x_trans_mean, (1, n_x))
x_trans_mat = tf.reshape(model.gener_x_trans_mat_values, [n_x, n_x])
x_trans_mat /= tf.nn.relu(tf.reduce_max(tf.abs(tf.linalg.eigvals(x_trans_mat))) - 1.) + 1.
grad_log_lambda_x, hessian_log_lambda_x = eval_log_lambda_derivative_split(model, matmul_mask_tranpose_vec(masks, x_current_means), kappas, log_scale_train, n_monte, n_site)
grad_lambda_x, hessian_lambda_x = eval_lambda_g_derivative_split(model, tf.repeat(x_current_means, n_site, axis=1), log_scale_train, n_monte, n_site)
likelihood_grads = tf.reduce_sum(- matmul_mask_vec(masks, grad_log_lambda_x) + grad_lambda_x * tf.exp(- log_scale_eval), axis=1, keepdims=True)
likelihood_hessians = tf.reduce_sum(- matmul_mask_mat(masks, hessian_log_lambda_x) + hessian_lambda_x * tf.exp(- log_scale_eval), axis=1)
likelihood_grads_tilde = tf.linalg.matrix_transpose(tf.matmul(x_affine_tri, tf.linalg.matrix_transpose(likelihood_grads))) * tf.exp(0.5 * x_affine_diag)
likelihood_hessians_tilde = tf.exp(0.5 * x_affine_diag[:, tf.newaxis] + 0.5 * x_affine_diag) * tf.linalg.matmul(x_affine_tri, tf.linalg.matrix_transpose(tf.matmul(x_affine_tri, likelihood_hessians)))
x_current_means_tilde = tf.linalg.matrix_transpose(tf.linalg.triangular_solve(tf.transpose(x_affine_tri), tf.linalg.matrix_transpose(x_current_means), lower=False)) * tf.exp(- 0.5 * x_affine_diag)
y_tilde = tf.concat([tf.matmul(x_current_means_tilde[:1] - x_init_mean, x_init_prec), tf.matmul(x_current_means_tilde[1:] - tf.matmul(x_current_means_tilde[:-1], x_trans_mat) - x_trans_mean, x_trans_prec)], axis=0)
gener_x_grads = - likelihood_grads_tilde - tf.concat([y_tilde[:-1] - tf.matmul(y_tilde[1:], tf.transpose(x_trans_mat)), y_tilde[-1:]], axis=0)
epsx = tf.random.normal((R, n_monte, n_x))
with tf.device('/cpu:0'):
x_cholesky_diags, x_cholesky_off_diags, vs_tilde, ws_tilde = cholesky_update(likelihood_hessians_tilde, gener_x_grads, x_trans_mat, x_trans_prec, x_init_prec, epsx)
x_next_covs_tilde, x_next_pair_covs_tilde = covariance_update(x_cholesky_diags, x_cholesky_off_diags)
vs = tf.linalg.matrix_transpose(tf.matmul(tf.transpose(x_affine_tri), tf.linalg.matrix_transpose(vs_tilde * tf.exp(0.5 * x_affine_diag))))
ws = tf.linalg.matrix_transpose(tf.matmul(tf.transpose(x_affine_tri), tf.linalg.matrix_transpose(ws_tilde * tf.exp(0.5 * x_affine_diag))))
x_next_means = x_current_means + vs
x_next_covs = tf.linalg.matrix_transpose(tf.matmul(tf.transpose(x_affine_tri), tf.linalg.matrix_transpose(tf.matmul(tf.transpose(x_affine_tri), x_next_covs_tilde * tf.exp(0.5 * x_affine_diag[:, tf.newaxis] + 0.5 * x_affine_diag)))))
x = x_next_means + ws
gy = model.gener_y(x)
y_mean, y_prec_diag = model.gener_y_mean(gy), model.gener_y_prec_values(gy)
y_smoothed_means = tf.reduce_mean(y_mean, 1, keepdims=True)
y_smoothed_covs = tf.reduce_mean(tf.matmul((y_smoothed_means - y_mean)[:, :, :, tf.newaxis], (y_smoothed_means - y_mean)[:, :, tf.newaxis]), 1) + tf.reduce_mean(tf.linalg.diag(tf.exp(- y_prec_diag)), axis=1)
return y_smoothed_means, y_smoothed_covs, x_next_means, x_next_covs
def _cholesky_update(x_hessian_diags, x_grads, x_trans_mat, x_trans_prec, x_init_prec, epsx):
R, n_monte, n_x = tf.shape(epsx)[0], tf.shape(epsx)[1], tf.shape(epsx)[2]
x_forward_state = collections.namedtuple('x_forward_state', ['x_predicted_prec', 'x_cholesky_diag', 'x_cholesky_off_diag', 'u'])
x_forward_init_state = x_forward_state(x_init_prec, tf.zeros((n_x, n_x)), tf.zeros((n_x, n_x)), tf.zeros((1, n_x)))
def update_forward_fn(state, elem):
x_hessian_diag, x_grad, m = elem
x_predicted_prec, x_cholesky_off_diag, u = state.x_predicted_prec, state.x_cholesky_off_diag, state.u
x_cholesky_diag = tf.linalg.cholesky(x_predicted_prec + x_hessian_diag + m * tf.matmul(tf.matmul(x_trans_mat, x_trans_prec), tf.transpose(x_trans_mat)))
u = tf.transpose(tf.linalg.triangular_solve(x_cholesky_diag, tf.transpose(x_grad - tf.matmul(u, tf.transpose(x_cholesky_off_diag)))))
x_cholesky_off_diag = tf.transpose(tf.linalg.triangular_solve(x_cholesky_diag, - tf.matmul(x_trans_mat, x_trans_prec)))
x_predicted_prec = x_trans_prec - tf.matmul(x_cholesky_off_diag, tf.transpose(x_cholesky_off_diag))
return x_forward_state(x_predicted_prec, x_cholesky_diag, x_cholesky_off_diag, u)
ms = tf.concat([tf.ones(R-1), tf.zeros(1)], axis=0)
_, x_cholesky_diags, x_cholesky_off_diags, us = tf.scan(update_forward_fn, elems=(x_hessian_diags, x_grads, ms), initializer=x_forward_init_state)
x_backward_state = collections.namedtuple('x_backward_state', ['vw'])
x_backward_init_state = x_backward_state(tf.zeros((n_monte+1, n_x)))
gs = tf.concat([us, epsx], axis=1)
def update_backward_fn(state, elem):
x_cholesky_diag, x_cholesky_off_diag, g = elem
vw = state.vw
vw = tf.transpose(tf.linalg.triangular_solve(tf.transpose(x_cholesky_diag), tf.transpose(g - tf.matmul(vw, x_cholesky_off_diag)), lower=False))
return x_backward_state(vw)
vws, = tf.scan(update_backward_fn, elems=(x_cholesky_diags, x_cholesky_off_diags, gs), initializer=x_backward_init_state, reverse=True)
vs, ws = vws[:, :1], vws[:, 1:]
return x_cholesky_diags, x_cholesky_off_diags, vs, ws
@tf.function(experimental_compile=True)
def cholesky_update(x_hessian_diags, x_grads, x_trans_mat, x_trans_prec, x_init_prec, epsx):
return _cholesky_update(x_hessian_diags, x_grads, x_trans_mat, x_trans_prec, x_init_prec, epsx)
def _covariance_update(x_cholesky_diags, x_cholesky_off_diags):
n_x = tf.shape(x_cholesky_diags)[-1]
x_backward_state = collections.namedtuple('x_backward_state', ['x_smoothed_cov', 'x_smoothed_pair_cov'])
x_backward_init_state = x_backward_state(tf.zeros((n_x, n_x)), tf.zeros((n_x, n_x)))
x_cholesky_inv_diags = tf.linalg.triangular_solve(x_cholesky_diags, tf.eye(n_x) + tf.zeros_like(x_cholesky_diags))
def update_backward_fn(state, elem):
x_cholesky_inv_diag, x_cholesky_off_diag = elem
x_smoothed_cov, x_smoothed_pair_cov = state.x_smoothed_cov, state.x_smoothed_pair_cov
x_smoothed_pair_cov = - tf.matmul(tf.matmul(x_smoothed_cov, x_cholesky_off_diag), x_cholesky_inv_diag)
x_smoothed_cov = tf.matmul(tf.transpose(x_cholesky_inv_diag), x_cholesky_inv_diag - tf.matmul(tf.transpose(x_cholesky_off_diag), x_smoothed_pair_cov))
return x_backward_state(x_smoothed_cov, x_smoothed_pair_cov)
x_smoothed_covs, x_smoothed_pair_covs = tf.scan(update_backward_fn, elems=(x_cholesky_inv_diags, x_cholesky_off_diags), initializer=x_backward_init_state, reverse=True)
return x_smoothed_covs, x_smoothed_pair_covs
@tf.function(experimental_compile=True)
def covariance_update(x_cholesky_diags, x_cholesky_off_diags):
return _covariance_update(x_cholesky_diags, x_cholesky_off_diags)
@tf.function
def _assign_log_lambda(model, batch_kappas, batch_masks, batch_ys, n_monte):
n_site = model.n_params['n_site']
R = tf.shape(batch_ys)[1]
n_x = model.n_params['n_x']
def _lambda_g_cost_batch(state, elem):
kappas, masks, y = elem
epsx = tf.random.normal((R, 1, n_x), dtype=tf.float32)
y_not_nan, is_not_nan, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde = compute_eta_loss_1(model, kappas, masks, y)
with tf.device('/cpu:0'):
_, x = compute_eta_loss_2(model, x_affine_diag, x_affine_tri, recog_x_prec_tilde, recog_x_mean_dot_prec_tilde, epsx)
lambda_g_loss, _, _ = compute_lambda_g_loss(model, tf.repeat(x, n_site, axis=1), n_monte)
lambda_g_cost_epoch = tf.reduce_logsumexp(tfp.math.reduce_logmeanexp(lambda_g_loss, axis=1), axis=0)
n_epoch = tf.reduce_sum(masks, axis=(0, 1))
return lambda_g_cost_epoch, n_epoch
lambda_g_cost, n = tf.scan(_lambda_g_cost_batch, elems=(batch_kappas, batch_masks, batch_ys), initializer=(tf.zeros(n_site), tf.zeros(n_site)))
lambda_g_cost, n = tf.reduce_logsumexp(lambda_g_cost, 0), tf.reduce_sum(n, 0)
model.log_lambda.assign(tf.math.log(n) - lambda_g_cost)