-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
102 lines (85 loc) · 3.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cupy as cp
import h5py
import os
import tempfile
import time
import urllib
## Check the quality of the prediction (recall)
def calc_recall(found_indices, ground_truth):
found_indices = cp.asarray(found_indices)
bs, k = found_indices.shape
if bs != ground_truth.shape[0]:
raise RuntimeError(
"Batch sizes do not match {} vs {}".format(
bs, ground_truth.shape[0]
)
)
if k > ground_truth.shape[1]:
raise RuntimeError(
"Not enough indices in the ground truth ({} > {})".format(
k, ground_truth.shape[1]
)
)
n = 0
# Go over the batch
for i in range(bs):
# Note, ivf-pq does not guarantee the ordered input, hence the use of intersect1d
n += cp.intersect1d(found_indices[i, :k], ground_truth[i, :k]).size
recall = n / found_indices.size
return recall
class BenchmarkTimer:
"""Provides a context manager that runs a code block `reps` times
and records results to the instance variable `timings`. Use like:
.. code-block:: python
timer = BenchmarkTimer(rep=5)
for _ in timer.benchmark_runs():
... do something ...
print(np.min(timer.timings))
This class is borrowed from the rapids/cuml benchmark suite
"""
def __init__(self, reps=1, warmup=0):
self.warmup = warmup
self.reps = reps
self.timings = []
def benchmark_runs(self):
for r in range(self.reps + self.warmup):
t0 = time.time()
yield r
t1 = time.time()
self.timings.append(t1 - t0)
if r >= self.warmup:
self.timings.append(t1 - t0)
def load_dataset(dataset_url="http://ann-benchmarks.com/sift-128-euclidean.hdf5", work_folder=None):
"""Download dataset from url. It is expected that the dataset contains a hdf5 file in ann-benchmarks format
Parameters
----------
dataset_url address of hdf5 file
work_folder name of the local folder to store the dataset
"""
dataset_filename = dataset_url.split("/")[-1]
# We'll need to load store some data in this tutorial
if work_folder is None:
work_folder = os.path.join(tempfile.gettempdir(), "raft_example")
if not os.path.exists(work_folder):
os.makedirs(work_folder)
print("The index and data will be saved in", work_folder)
## download the dataset
dataset_path = os.path.join(work_folder, dataset_filename)
if not os.path.exists(dataset_path):
urllib.request.urlretrieve(dataset_url, dataset_path)
f = h5py.File(dataset_path, "r")
return f