-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
239 lines (196 loc) · 8.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import torch
import numpy as np
import pandas as pd
from fairseq import checkpoint_utils, utils, options, tasks
from fairseq.logging import progress_bar
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from src.features.graph_preprocessing import smiles2graph, preprocess_item
from src.data.collater import collater_2d
from torch_geometric.data import Data
import ogb
import sys
import os
from pathlib import Path
from sklearn.metrics import roc_auc_score
from src.tasks.prediction_graph import GraphPredictionConfig, GraphPredictionTask
from src.models.transformer_m import TransformerMModel
from src.models.graphormer import GraphormerModel
import sys
from os import path
from src.data.iml_test_dataset import get_canonical_smiles
def get_raw_data():
raw_dir = "/Users/oscarbalcells/Desktop/AI/task4/datasets/iml-task4/raw"
x_train = pd.read_csv(os.path.join(raw_dir, "train_features.csv.zip"), index_col="Id", compression='zip')
y_train = np.load(os.path.join(raw_dir, "train_labels.npy"))
x_test = pd.read_csv(os.path.join(raw_dir, "test_features.csv.zip"), index_col="Id", compression='zip')
iml_smiles = list(pd.concat([x_train, x_test], axis=0)["smiles"])[:3]
iml_homolumogap = np.concatenate([y_train, np.zeros(len(x_test))])[:3]
print("IML smiles :3", iml_smiles)
print("IML gaps :3", iml_homolumogap)
# indices = [993]
data_df = pd.read_csv("/Users/oscarbalcells/Desktop/AI/task4/datasets/pcqm4m-v2/raw/data.csv.gz")
ogb_smiles = data_df['smiles'][:10]
ogb_homolumogap = np.array(data_df['homolumogap'][:10])
return iml_smiles, iml_homolumogap, ogb_smiles, ogb_homolumogap
def build_batch_from_smiles(smiles_list, homolumogap_list=None):
data_list = []
for i, smiles in enumerate(smiles_list):
smiles = get_canonical_smiles(smiles)
graph = smiles2graph(smiles)
data = Data()
assert (len(graph['edge_feat']) == graph['edge_index'].shape[1])
assert (len(graph['node_feat']) == graph['num_nodes'])
data.idx = 0
data.__num_nodes__ = int(graph['num_nodes'])
data.edge_index = torch.from_numpy(graph['edge_index']).to(torch.int64)
data.edge_attr = torch.from_numpy(graph['edge_feat']).to(torch.int64)
data.x = torch.from_numpy(graph['node_feat']).to(torch.int64)
if homolumogap_list is not None:
data.y = torch.Tensor([homolumogap_list[i]])
else:
data.y = torch.Tensor([0.0])
# data.pos = torch.zeros(data.__num_nodes__, 3).to(torch.float32)
data_list.append(preprocess_item(data))
batch = collater_2d(data_list,
max_node=256,
multi_hop_max_dist=5,
spatial_pos_max=1024)
return batch
def visual_batch():
indices = [993, 859, 298]
data_df = pd.read_csv("/Users/oscarbalcells/Desktop/AI/task4/datasets/pcqm4m-v2/raw/data.csv.gz")
ogb_smiles = data_df['smiles'].iloc[indices]
ogb_homolumogap = np.array(data_df['homolumogap'].iloc[indices])
sample = build_batch_from_smiles(ogb_smiles, ogb_homolumogap)
for el in sample.keys():
if el != "idx":
print(f"{el} is {sample[el][:3]}")
print(f"{el} has shape {sample[el][:3].shape}")
def manual_eval():
cfg = GraphPredictionConfig()
cfg.seed = 1
cfg.arch = "graphormer_base"
cfg.dataset_name = "pcqm4m-v2"
# cfg.data_path = "/users/oscarbalcells/Desktop/AI/task4/datasets/iml-task4"
cfg.data_path = "/users/oscarbalcells/Desktop/AI/task4/datasets/pcqm4m-v2"
cfg.max_nodes = 512
cfg.encoder_layers = 12
cfg.num_classes = 1
checkpoint_path = "/Users/oscarbalcells/Desktop/AI/task4/models/checkpoint_best_pcqm4mv2.pt"
metric = "rmse"
split = "valid"
task = GraphPredictionTask(cfg)
model = task.build_model(cfg)
# load checkpoint
model_state = torch.load(checkpoint_path)["model"]
model.load_state_dict(
model_state, strict=True
)
del model_state
# iml_smiles, iml_homolumogap, ogb_smiles, ogb_homolumogap = get_raw_data()
iml_smiles = ["[SiH2]1C=Cc2sc3c([nH]c4cc(oc34)-c3nccc4nsnc34)c12"] # CC(NCC[C@H]([C@@H]1CCC(=CC1)C)C)C"]
iml_homolumogap = np.array([0.0])
iml_batch = build_batch_from_smiles(iml_smiles)
# ogb_batch = build_batch_from_smiles(ogb_smiles, ogb_homolumogap)
# for key in ogb_batch:
# if key != "idx":
# print(f"{key}: {ogb_batch[key][:3]}")
# print(f"{key} has shape {ogb_batch[key][:3].shape}")
# not indegree, not spatial pos,
# print(ogb_batch["attn_edge_type"][0][:13, :13, :])
# print(ogb_batch["attn_edge_type"][:3].shape)
# print("Manual batch", iml_batch, file=open("manual_batch.txt", "w"))
# torch.save(ogb_batch, "manual_batch.pt")
with torch.no_grad():
model.eval()
iml_y = model(iml_batch)[:, 0, :].reshape(-1).cpu().numpy()
# ogb_y = model(ogb_batch)[:, 0, :].reshape(-1).cpu().numpy()
print("IML Y", iml_y)
print("IML Gap", iml_homolumogap)
# print("OGB Y", ogb_y)
# print("OGB Gap", ogb_homolumogap)
iml_rmse = np.sqrt(((iml_y - iml_homolumogap) ** 2).mean())
# ogb_rmse = np.sqrt(((ogb_y - ogb_homolumogap) ** 2).mean())
print("IML RMSE {0}".format(iml_rmse))
# print("OGB RMSE {0}".format(ogb_rmse))
def eval():
cfg = GraphPredictionConfig()
cfg.seed = 1
cfg.arch = "graphormer_base"
cfg.dataset_name = "pcqm4m-v2"
# cfg.data_path = "/users/oscarbalcells/Desktop/AI/task4/datasets/iml-task4"
cfg.data_path = "/users/oscarbalcells/Desktop/AI/task4/datasets/pcqm4m-v2"
cfg.max_nodes = 512
cfg.encoder_layers = 12
cfg.num_classes = 1
checkpoint_path = "/Users/oscarbalcells/Desktop/AI/task4/models/checkpoint_best_pcqm4mv2.pt"
metric = "rmse"
split = "train"
np.random.seed(cfg.seed)
utils.set_torch_seed(cfg.seed)
task = GraphPredictionTask(cfg)
model = task.build_model(cfg)
# load checkpoint
model_state = torch.load(checkpoint_path)["model"]
model.load_state_dict(
model_state, strict=True
)
del model_state
# model.to(torch.cuda.current_device())
# load dataset
task.load_dataset(split)
batch_iterator = task.get_batch_iterator(
dataset=task.dataset(split),
disable_iterator_cache=False,
)
itr = batch_iterator.next_epoch_itr(
shuffle=False, set_dataset_epoch=False
)
y_pred = []
y_true = []
with torch.no_grad():
model.eval()
for i, sample in enumerate(itr):
# for el in sample["net_input"]["batched_data"].keys():
# if el != "idx":
# print(f"{el} is {sample['net_input']['batched_data'][el][:3]}")
# print(f"{el} has shape {sample['net_input']['batched_data'][el][:3].shape}")
# print("In degree:", sample["net_input"]["batched_data"]["in_degree"][:3])
# print("Spatial pos:", sample["net_input"]["batched_data"]["attn_edge_type"][:3])
# print("Spatial pos shape", sample["net_input"]["batched_data"]["attn_edge_type"][:3].shape)
# print("Attn edge type pos:", sample["net_input"]["batched_data"]["attn_edge_type"][0][:, 13:, :])
# print("Idx:", sample["net_input"]["batched_data"]["idx"][:3])
first_element = sample["net_input"]["batched_data"]
# for key in first_element.keys():
# if key != "idx":
# first_element[key] = first_element[key][:1]
# torch.save(first_element, "fairseq_batch.pt")
# print("Fairseq batch:", first_element, file=open("fairseq_batch.txt", "w"))
y = model(**sample["net_input"])[:, 0, :].reshape(-1)
y_pred.extend(y.detach().cpu())
y_true.extend(sample["target"].detach().cpu().reshape(-1)[:y.shape[0]])
break
print("Predictions:", y_pred[:10])
print("True values:", y_true[:10])
# save predictions
y_pred = torch.Tensor(y_pred)
y_true = torch.Tensor(y_true)
if metric == "rmse":
rmse = np.sqrt(((y_true - y_pred) ** 2).mean())
print(f"RMSE: {rmse}")
elif metric == "mae":
mae = np.mean(np.abs(y_true.numpy() - y_pred.numpy()))
print(f"mae: {mae}")
return mae
else:
raise ValueError(f"Unsupported metric {args.metric}")
import sys
if __name__ == '__main__':
if sys.argv[1] == "eval":
eval()
elif sys.argv[1] == "manual_eval":
manual_eval()
elif sys.argv[1] == "visual_batch":
visual_batch()
else:
assert False