Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can heat plot work for multiple clusters? #377

Open
osorensen opened this issue Feb 15, 2024 · 1 comment
Open

Can heat plot work for multiple clusters? #377

osorensen opened this issue Feb 15, 2024 · 1 comment
Assignees
Labels
enhancement New feature or request

Comments

@osorensen
Copy link
Collaborator

As pointed out by Marta:

library(BayesMallows)
mod <- compute_mallows(
  data = setup_rank_data(rankings = cluster_data),
  model_options = set_model_options(n_clusters = 3),
  compute_options = set_compute_options(nmc = 10000, burnin = 1000)
)

heat_plot(mod)
#> Error in heat_plot(mod): heat_plot only works for a single cluster

Created on 2024-02-15 with reprex v2.1.0

@osorensen osorensen added the enhancement New feature or request label Feb 15, 2024
@osorensen osorensen self-assigned this Feb 15, 2024
@crispinomarta
Copy link

Something like this should work.

heat_plot_mixture(model_fit, ...){

if (is.null(burnin(model_fit))) {
stop("Please specify the burnin with 'burnin(model_fit) <- value'.")
}

consensus_all <- compute_consensus(model_fit)
posterior_ranks <- model_fit$rho[model_fit$rho$iteration >
burnin(model_fit), , drop = FALSE]
posterior_ranks$probability <- 1
heatplot_data_all <- aggregate(posterior_ranks[, "probability",
drop = FALSE], by = list(cluster = posterior_ranks$cluster,
item = posterior_ranks$item, value = posterior_ranks$value),
FUN = function(x) sum(x)/length(unique(posterior_ranks$iteration)))

for(k in 1:FIT$n_clusters){
heatplot_data <- heatplot_data_all%>%filter(cluster == paste0('Cluster ',k))
item_order <- unique(consensus_all%>%filter(cluster == paste0('Cluster ',k)))[['item']]
heatplot_data$item <- factor(heatplot_data$item, levels = item_order)
heatplot_data <- heatplot_data[order(heatplot_data$item),
, drop = FALSE]
heatplot_expanded <- expand.grid(cluster = unique(heatplot_data$cluster),
item = unique(heatplot_data$item),
value = unique(heatplot_data$value))
heatplot_expanded <- merge(heatplot_expanded, heatplot_data,
by = c("cluster", "item", "value"), all.x = TRUE)
heatplot_expanded$probability[is.na(heatplot_expanded$probability)] <- 0
ggplot2::ggplot(heatplot_expanded, ggplot2::aes(x = .data$item,
y = .data$value, fill = .data$probability)) + ggplot2::geom_tile() +
ggplot2::labs(fill = "Probability") + ggplot2::xlab("Item") +
ggplot2::ylab("Rank")
}
}

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

No branches or pull requests

2 participants