-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_generate.api.ensemble.pre_load.sh
48 lines (36 loc) · 1.61 KB
/
run_generate.api.ensemble.pre_load.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
## mode
mode=ensemble_sample_N
## I / O params
task=alpaca_eval
data_name=alpaca_eval.num=805.jsonl
input=../../data/$task/$data_name
mkdir ../../output/$task/
save_mode='a'
## model params
model_num=5
root_configs=../launch_large_models_sglang/server_configs_Mix-8x22B_Qw2-72B_lla-3.1-70b_Wiza-8x22B_Mis-large-2407/
path_reward_config=../../model_configs/reward_ArmoRM.gpus/reward=ArmoRM.gpu=1.json
config_name=Mix-8x22B_Qw2-72B_lla-3.1-70b_Wiza-8x22B_Mis-large-2407.reward=ArmoRM
short_config_name=$config_name
## generation params
parallel_num=100
batch_size=1000
for n_samples in 32 ; do
## sampling params
max_tokens=2048
temperature=0.7
top_p=1
output=../../output/$task/${data_name}.mode=${mode}.model_num=${model_num}.config=${short_config_name}.n_samples=${n_samples}.temp=${temperature}.top_p=${top_p}.jsonl
python ../../code/ensemble_inference.server_pre_load.fast.py --mode $mode \
--input $input \
--output $output \
--root_configs $root_configs \
--path_reward_config $path_reward_config \
--n_samples $n_samples \
--max_tokens $max_tokens \
--temperature $temperature \
--top_p $top_p \
--parallel_num $parallel_num \
--save_mode $save_mode \
--batch_size $batch_size
done;