-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
316 lines (262 loc) · 14 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""
Adapted from:
Modification by: Gurkirt Singh
Modification started: 2nd April 2019
large parts of this files are from many github repos
mainly adopted from
https://github.com/gurkirt/realtime-action-detection
Please don't remove above credits and give star to these repos
Licensed under The MIT License [see LICENSE for details]
"""
import os
import pdb
import time, json
import socket
import getpass
import argparse
import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data_utils
from torch.optim.lr_scheduler import MultiStepLR
from modules import utils
from modules.utils import str2bool
from modules.evaluation import evaluate_detections
from modules.box_utils import decode, nms
from modules import AverageMeter
from data import DetectionDataset, custum_collate
from models.retinanet_shared_heads import build_retinanet_shared_heads
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from torchvision import transforms
from data.transforms import Resize
from train import validate
parser = argparse.ArgumentParser(description='Training single stage FPN with OHEM, resnet as backbone')
# anchor_type to be used in the experiment
parser.add_argument('--anchor_type', default='kmeans', help='kmeans or default')
# Name of backbone networ, e.g. resnet18, resnet34, resnet50, resnet101 resnet152 are supported
parser.add_argument('--basenet', default='resnet50', help='pretrained base model')
# if output heads are have shared features or not: 0 is no-shareing else sharining enabled
parser.add_argument('--multi_scale', default=False, type=str2bool,help='perfrom multiscale training')
parser.add_argument('--shared_heads', default=0, type=int,help='4 head layers')
parser.add_argument('--num_head_layers', default=4, type=int,help='0 mean no shareding more than 0 means shareing')
parser.add_argument('--use_bias', default=True, type=str2bool,help='0 mean no bias in head layears')
# Name of the dataset only voc or coco are supported
parser.add_argument('--dataset', default='coco', help='pretrained base model')
# Input size of image only 600 is supprted at the moment
parser.add_argument('--min_size', default=600, type=int, help='Input Size for FPN')
parser.add_argument('--max_size', default=1000, type=int, help='Input Size for FPN')
# data loading argumnets
parser.add_argument('--batch_size', default=16, type=int, help='Batch size for training')
# Number of worker to load data in parllel
parser.add_argument('--num_workers', '-j', default=8, type=int, help='Number of workers used in dataloading')
# optimiser hyperparameters
parser.add_argument('--optim', default='SGD', type=str, help='Optimiser type')
parser.add_argument('--loss_type', default='mbox', type=str, help='loss_type')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--eval_iters', default='90000', type=str, help='Chnage the lr @')
# Freeze batch normlisatio layer or not
parser.add_argument('--fbn', default=True, type=bool, help='if less than 1 mean freeze or else any positive values keep updating bn layers')
parser.add_argument('--freezeupto', default=1, type=int, help='if 0 freeze or else keep updating bn layers')
# Evaluation hyperparameters
parser.add_argument('--iou_thresh', default=0.5, type=float, help='Evaluation threshold')
parser.add_argument('--conf_thresh', default=0.05, type=float, help='Confidence threshold for evaluation')
parser.add_argument('--nms_thresh', default=0.5, type=float, help='NMS threshold')
parser.add_argument('--topk', default=100, type=int, help='topk for evaluation')
# Progress logging
parser.add_argument('--log_iters', default=True, type=str2bool, help='Print the loss at each iteration')
parser.add_argument('--log_step', default=10, type=int, help='Log after k steps for text/tensorboard')
parser.add_argument('--tensorboard', default=False, type=str2bool, help='Use tensorboard for loss/evalaution visualization')
# Program arguments
parser.add_argument('--man_seed', default=1, type=int, help='manualseed for reproduction')
parser.add_argument('--multi_gpu', default=1, type=int, help='If more than then use all visible GPUs by default only one GPU used ')
# source or dstination directories
parser.add_argument('--data_root', default='/mnt/mercury-fast/datasets/', help='Location to root directory fo dataset') # /mnt/mars-fast/datasets/
parser.add_argument('--save_root', default='/mnt/mercury-fast/datasets/', help='Location to save checkpoint models') # /mnt/sun-gamma/datasets/
parser.add_argument('--model_dir', default='', help='Location to where imagenet pretrained models exists') # /mnt/mars-fast/datasets/
## Parse arguments
args = parser.parse_args()
args = utils.set_args(args, 'test') # set directories and subsets fo datasets
## set random seeds and global settings
np.random.seed(args.man_seed)
torch.manual_seed(args.man_seed)
torch.cuda.manual_seed_all(args.man_seed)
torch.set_default_tensor_type('torch.FloatTensor')
def main():
args.exp_name = utils.create_exp_name(args)
args.save_root += args.dataset+'/'
args.save_root = args.save_root+'cache/'+args.exp_name+'/'
val_transform = transforms.Compose([
Resize(args.min_size, args.max_size),
transforms.ToTensor(),
transforms.Normalize(mean=args.means,std=args.stds)])
val_dataset = DetectionDataset(args, train=False, image_sets=args.val_sets,
transform=val_transform, full_test=False)
print('Done Loading Dataset Validation Dataset :::>>>\n',val_dataset.print_str)
args.data_dir = val_dataset.root
args.num_classes = len(val_dataset.classes) + 1
args.classes = val_dataset.classes
args.head_size = 256
net = build_retinanet_shared_heads(args).cuda()
if args.multi_gpu>0:
print('\nLets do dataparallel\n')
net = torch.nn.DataParallel(net)
net.eval()
for iteration in args.eval_iters:
args.det_itr = iteration
log_file = open("{pt:s}/testing-{it:06d}-{date:%m-%d-%Hx}.log".format(pt=args.save_root, it=iteration, date=datetime.datetime.now()), "w", 10)
log_file.write(args.exp_name + '\n')
args.model_path = args.save_root + 'model_{:06d}.pth'.format(iteration)
log_file.write(args.model_path+'\n')
net.load_state_dict(torch.load(args.model_path))
print('Finished loading model %d !' % iteration)
# Load dataset
val_data_loader = data_utils.DataLoader(val_dataset, int(args.batch_size), num_workers=args.num_workers,
shuffle=False, pin_memory=True, collate_fn=custum_collate)
# evaluation
torch.cuda.synchronize()
tt0 = time.perf_counter()
log_file.write('Testing net \n')
net.eval() # switch net to evaluation mode
if args.dataset != 'coco':
mAP, ap_all, ap_strs , det_boxes = validate(args, net, val_data_loader, val_dataset, iteration, iou_thresh=args.iou_thresh)
else:
mAP, ap_all, ap_strs , det_boxes = validate_coco(args, net, val_data_loader, val_dataset, iteration, log_file, iou_thresh=args.iou_thresh)
for ap_str in ap_strs:
print(ap_str)
log_file.write(ap_str+'\n')
ptr_str = '\nMEANAP:::=>'+str(mAP)+'\n'
print(ptr_str)
log_file.write(ptr_str)
torch.cuda.synchronize()
print('Complete set time {:0.2f}'.format(time.perf_counter() - tt0))
log_file.close()
def validate_coco(args, net, val_data_loader, val_dataset, iteration_num, resFile_txt, iou_thresh=0.5):
"""Test a FPN network on an image database."""
print('Validating at ', iteration_num)
annFile='{}/instances_{}.json'.format(args.data_dir,args.val_sets[0])
cocoGT=COCO(annFile)
coco_dets = []
resFile = args.save_root + 'detections-{:05d}.json'.format(args.det_itr)
# resFile_txt = open(args.save_root + 'detections-{:05d}.txt'.format(args.det_itr), 'w')
num_images = len(val_dataset)
num_classes = args.num_classes
det_boxes = [[] for _ in range(num_classes-1)]
gt_boxes = []
print_time = True
val_step = 50
count = 0
torch.cuda.synchronize()
ts = time.perf_counter()
activation = nn.Sigmoid().cuda()
if args.loss_type == 'mbox':
activation = nn.Softmax(dim=2).cuda()
idlist = val_dataset.idlist
all_ids = val_dataset.ids
with torch.no_grad():
for val_itr, (images, targets, batch_counts, img_indexs, wh) in enumerate(val_data_loader):
torch.cuda.synchronize()
t1 = time.perf_counter()
batch_size = images.size(0)
height, width = images.size(2), images.size(3)
images = images.cuda(0, non_blocking=True)
decoded_boxes, conf_data = net(images)
conf_scores_all = activation(conf_data).clone()
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
tf = time.perf_counter()
print('Forward Time {:0.3f}'.format(tf-t1))
for b in range(batch_size):
coco_image_id = int(all_ids[img_indexs[b]][1][8:])
width, height = wh[b][0], wh[b][1]
o_width, o_height = wh[b][2], wh[b][3]
# print(wh[b])
gt = targets[b, :batch_counts[b]].numpy()
gt_boxes.append(gt)
decoded_boxes_b = decoded_boxes[b]
conf_scores = conf_scores_all[b].clone()
#Apply nms per class and obtain the results
for cl_ind in range(1, num_classes):
# pdb.set_trace()
scores = conf_scores[:, cl_ind].squeeze()
if args.loss_type == 'yolo':
scores = conf_scores[:, cl_ind].squeeze() * conf_scores[:, 0].squeeze() * 5.0
# scoresth, _ = torch.sort(scores, descending=True)
c_mask = scores.gt(args.conf_thresh) # greater than minmum threshold
# c_mask = scores.gt(min(max(max_scoresth, args.conf_thresh), min_scoresth)) # greater than minmum threshold
scores = scores[c_mask].squeeze()
# print('scores size',scores.size())
if scores.dim() == 0:
# print(len(''), ' dim ==0 ')
det_boxes[cl_ind - 1].append(np.asarray([]))
continue
boxes = decoded_boxes_b.clone()
l_mask = c_mask.unsqueeze(1).expand_as(boxes)
boxes = boxes[l_mask].view(-1, 4)
# idx of highest scoring and non-overlapping boxes per class
ids, counts = nms(boxes, scores, args.nms_thresh, args.topk*10) # idsn - ids after nms
scores = scores[ids[:counts]].cpu().numpy()
pick = min(scores.shape[0], args.topk)
scores = scores[:pick]
boxes = boxes[ids[:counts]].cpu().numpy()
boxes = boxes[:pick, :]
cls_id = cl_ind-1
if len(idlist)>0:
cls_id = idlist[cl_ind-1]
# pdb.set_trace()
for ik in range(boxes.shape[0]):
boxes[ik, 0] = max(0, boxes[ik, 0])
boxes[ik, 2] = min(width, boxes[ik, 2])
boxes[ik, 1] = max(0, boxes[ik, 1])
boxes[ik, 3] = min(height, boxes[ik, 3])
# box_ = [round(boxes[ik, 0], 1), round(boxes[ik, 1],1), round(boxes[ik, 2],1), round(boxes[ik, 3], 1)]
box_ = [round(boxes[ik, 0]*o_width/width,1), round(boxes[ik, 1]*o_height/height,1), round(boxes[ik, 2]*o_width/width,1), round(boxes[ik, 3]*o_height/height,1)]
# box_ = [round(box_*o_width/width,1), round(), round(boxes[ik, 2],1), round(boxes[ik, 3], 1)]
box_[2] = round(box_[2] - box_[0], 1)
box_[3] = round(box_[3] - box_[1], 1)
box_ = [float(b) for b in box_]
coco_dets.append({"image_id" : int(coco_image_id), "category_id" : int(cls_id),
"bbox" : box_, "score" : float(scores[ik]),
})
cls_dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=True)
det_boxes[cl_ind-1].append(cls_dets)
count += 1
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
te = time.perf_counter()
print('im_detect: {:d}/{:d} time taken {:0.3f}'.format(count, num_images, te-ts))
torch.cuda.synchronize()
ts = time.perf_counter()
print('NMS stuff Time {:0.3f}'.format(ts - tf))
# print('Evaluating detections for itration number ', iteration_num)
mAP, ap_all, ap_strs , det_boxes = evaluate_detections(gt_boxes, det_boxes, val_dataset.classes, iou_thresh=iou_thresh)
for ap_str in ap_strs:
print(ap_str)
resFile_txt.write(ap_str+'\n')
ptr_str = '\nMEANAP:::=>'+str(mAP)+'\n'
print(ptr_str)
resFile_txt.write(ptr_str)
print('saving results :::::')
with open(resFile,'w') as f:
json.dump(coco_dets, f)
cocoDt=cocoGT.loadRes(resFile)
# running evaluation
cocoEval = COCOeval(cocoGT, cocoDt, 'bbox')
# cocoEval.params.imgIds = imgIds
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
resFile_txt.write(ptr_str)
# pdb.set_trace()
eval_strings = utils.eval_strings()
ptr_str = ''
for sid, val in enumerate(cocoEval.stats):
ptr_str += eval_strings[sid] + str(val) + '\n'
print('\n\nPrintning COCOeval Generated results\n\n ')
print(ptr_str)
resFile_txt.write(ptr_str)
return mAP, ap_all, ap_strs , det_boxes
if __name__ == '__main__':
main()