-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path6502-SBC-using-Teensy.ino
271 lines (206 loc) · 7.28 KB
/
6502-SBC-using-Teensy.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
//
// TEENSY 65C02
//
// Access 65C02 address and databus using Teensy 3.6(3.3v) or 3.5 (5v)
// Can simulate RAM, ROM and ACIA (6551 or 6850)
// Provide access to all pins.
#include "SBC.h"
// ROM image declared as a C Array.
// Can be easily created from a real ROM image using srec_cat
// http://srecord.sourceforge.net/man/man1/srec_cat.html
#ifdef ROMEMU
#include "rom.h"
#endif
// Declare the Pins to use
// Bus Pins (DATA and ADDRESS)
// As the Teensy doens't expose 16 consecutive PINS attached to the same PORT
// we need to split the Address bus over two different PORTS
byte dataPins[] = {5,21,20,6,8,7,14,2}; // Data Bus
byte addressHPins [] = {30,29,1,0,18,19,17,16}; // Address Bus High byte
byte addressLPins[]={12,11,13,10,9,23,22,15}; // Address Bus Low byte
// Variable declarations
uint8_t chipEnable; // RAM, ROM or Serial to access
#ifdef DEBUG
byte databyte=0;
uint16_t savedaddress=0;
#endif
// Declare global variables
// Must be volatile to avoid any compiler optimization
volatile byte addressL,addressH;
volatile uint16_t i;
volatile boolean rw;
volatile byte ACIAStatus;
volatile uint16_t address;
// If RAM emulation is required
// declare a corresponding array
#ifdef RAMEMU
byte mem[RAMSIZE]; // declare RAM as a byte array.
#endif
// Redefine yield() as the default one is useless and waste time.
// This is required to achieve a descent speed
void yield(){}
void setup() {
Serial.begin(0); // Start the serial port
#ifdef DEBUG
Serial.print("Bringing RESET LOW\n");
#endif
// First thing, let's bring reset LOW
// This will stall the 6502 while we Initialize
pinMode(RESETPIN, OUTPUT);
digitalWrite(RESETPIN,LOW); // Bring the RESET LOW to get the 6502
// in a reset state
// Set all pins to their initial state.
#ifdef DEBUG
delay(2000);
#ifdef RAMEMU
Serial.print("RAM Emulation\n");
#endif
#ifdef ROMEMU
Serial.print("ROM Emulation\n");
#endif
#ifdef ACIA6551
Serial.print("6551 ACIA Emulation\n");
#endif
#ifdef ACIA6850
Serial.print("6850 ACIA Emulation\n");
#endif
#ifdef BARECPU
Serial.print("CPU Only\n");
#endif
Serial.print("Initializing PINs\n");
#endif
// Initialize Data and Address BUSs to Input
for (int i=0;i<8;i++) {
pinMode(dataPins[i],INPUT); //Ensure we're not writing to the Bus
pinMode(addressLPins[i],INPUT_PULLDOWN);
pinMode(addressHPins[i],INPUT_PULLDOWN);
}
// Initialize R/W' and PHI2
pinMode(RWPIN, INPUT);
pinMode(CLOCKPIN, OUTPUT);
// With a bare CPU we need to drive these pins high.
// And SO LOW
// On a real SBC, this should be done by the circuit.
#ifdef BARECPU
pinMode(BEPIN, OUTPUT);
pinMode(RDYPIN, OUTPUT);
pinMode(NMIPIN, OUTPUT);
pinMode(IRQPIN, OUTPUT);
pinMode(MLPIN, INPUT);
pinMode(VPPIN, INPUT);
pinMode(SYNCPIN, INPUT);
pinMode(SOPIN,OUTPUT);
digitalWrite(BEPIN,HIGH);
digitalWrite(RDYPIN,HIGH);
digitalWrite(IRQPIN,HIGH);
digitalWrite(NMIPIN,HIGH);
digitalWrite(SOPIN,LOW);
#endif
// With a CPU on its own circuit we just want to read what happens.
#ifndef BARECPU
pinMode(BEPIN, INPUT);
pinMode(RDYPIN, INPUT);
pinMode(NMIPIN, INPUT);
pinMode(IRQPIN, INPUT);
#endif
#ifdef DEBUG
Serial.print("Initializing variables\n");
#endif
// Initialize some variables
addressL=0x0;
addressH=0x0;
chipEnable=0x0;
rw=true;
#ifdef RAMEMU
#ifdef DEBUG
Serial.print("Initializing RAM\n");
#endif
memset(mem,0x00,sizeof(mem)); // Initialize memory to 0x00
#endif
delay(2000); // Keep RESET for 2 second
// in order for Serial to be ready
#ifdef DEBUG
Serial.print("Releasing RESET\n");
#endif
digitalWrite(RESETPIN,HIGH); // Release RESET and start working
Serial.print("Starting Teensy 65C02....\n");
}
void loop(){
// Start the loop by bring Clock low and up again
// Duration of PHI1 (Clock low) is defined by WAITCYCLE
GPIOA_PDOR &=~(1<<13); // Bring Clock LOW to start Phase 1
// Clock is on PIN 13 of PORT A
for (i=0; i< WAITCYCLE; i++){} // Keep Phase 1 LOW for WAITCYCLES
GPIOA_PDOR |=1<<13; // Bring Clock HIGH to start Phase 2
// Read the Address BUSs
addressL = GPIOC_PDIR; // Read the Address Bus Low byte
addressH = GPIOB_PDIR; // Read the Address Bus High byte
// PORT B doesn't have 4 consecutive Pins so we need to concatenate
addressH |= (GPIOB_PDIR >> 12) & 0xF0; // Shift the register right by 12 bits
// to get bits 16,17,18 and 19
// in position 4,5,6 and 7.
// Mask bits 0,1,2,3 and
// add to addressH.
address = ((uint16_t)addressH << 8)| addressL; // Build the complete address
#ifdef DEBUG
savedaddress=address; // Saving original address for DEBUG as it's modified for ROM access.
#endif
// Address decoding
if (address < RAMSIZE) {
chipEnable=RAMENABLE;
} else if (address >= ROMADDRESS) {
chipEnable=ROMENABLE;
} else if (address >= ACIADDRESS) {
chipEnable=ACIAENABLE;
}
rw=(GPIOA_PDIR>>12)&0x1; // Check if it's a Write Cycle
// or Read Cycle
// If it's a READ Cycle, we need to reconfigure DATA Pins to OUTPUT
GPIOD_PDDR=(rw) ? GPIOOUTPUT : GPIOINPUT; // Configure PIN direction.
// Based on Address decoding, now is time to taje appropriate actions.
switch (chipEnable) {
#if defined ACIA6551 || defined ACIA6850
case ACIAENABLE:
if (rw) {
if (address == ACIADATA){ // CPU wants to get data
GPIOD_PDOR=Serial.read() ; // Send what's in buffer (CPU should have checked buffer is not empty)
} else if (address == ACIASTATUS) { // CPU Wants to check buffer status
GPIOD_PDOR=(Serial.available()>0) ? (RDRFBIT | TDREBIT) : TDREBIT; // We only check if read buffer is empty.
}
} else {
if (address== ACIADATA) { // Sending something to display ?
Serial.write((char)GPIOD_PDIR&0xFF); // Sends the data to Serial Interface.
}
// We simply ignore the case where we receive config /Control/Reset byte for ACIA.
}
break;
#endif
#ifdef ROMEMU
case ROMENABLE: // ROM is selected
address-=ROMADDRESS; //Change address to map to ROM address range
GPIOD_PDOR= rom[address]; // Write data from ROM to Address Bus
break;
#endif
#ifdef RAMEMU
case RAMENABLE:
if (rw) {
GPIOD_PDOR= mem[address]; // Read data from RAM
} else {
mem[address]=GPIOD_PDIR; // Write data to RAM
}
#endif
default:
break;
}
#ifdef DEBUG
databyte=(rw) ? GPIOD_PDOR : GPIOD_PDIR;
Serial.print(savedaddress,HEX);
Serial.print("\t");
Serial.print(rw);
Serial.print("\t");
Serial.print(databyte,HEX);
Serial.print("\n");
delay(50);
#endif
GPIOD_PDDR=GPIOINPUT; // Switch back GPIO to Input
}