-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBisimulation.agda
107 lines (94 loc) · 4.54 KB
/
Bisimulation.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
module Bisimulation where
open import UTxO.Hashing
open import UTxO.Types
open import UTxO.Validity
open import StateMachine.Base
open import Data.Sum using (_⊎_; [_,_]′)
open import Data.Product using (Σ; _×_; _,_; proj₂)
open import Data.Maybe using (Maybe; fromMaybe; nothing)
renaming (just to pure; ap to _<*>_) -- to use idiom brackets
open import Data.List using (List; []; _∷_; [_]; map; length; filter; null)
open import Relation.Nullary using (¬_; yes; no)
open import Data.Bool using (Bool; T; true; false; if_then_else_; not)
open import Data.List.Membership.Propositional using (_∈_; _∉_)
open import Data.List.Relation.Unary.Any using (here)
open import Function using (_∘_)
data _* {P : Set}(R : P → P → Set) : P → P → Set where
nil : ∀ {p} → (R *) p p
cons : ∀ {p p' p''} → R p p' → (R *) p' p'' → (R *) p p''
data ⇒l {P : Set} (V I : P → P → Set) : P → P → Set where
-- V = visible; I = internal
con : ∀{p p' p'' p'''} → (I *) p p' → V p' p'' → (I *) p'' p''' → ⇒l V I p p'''
data ⇒τ {P : Set} (I : P → P → Set) : P → P → Set where
-- I = internal
con : ∀{p p' p'' p'''} → (I *) p p' → I p' p'' → (I *) p'' p''' → ⇒τ I p p'''
record WeakBiSim {P Q : Set}
(_R_ : P → Q → Set)
(P→l P→τ : P → P → Set)
(Q→l Q→τ : Q → Q → Set)
: Set where
_P⇒l_ = ⇒l P→l P→τ
_P⇒τ_ = ⇒τ P→τ
_P⇒_ = P→τ *
_Q⇒l_ = ⇒l Q→l Q→τ
_Q⇒τ_ = ⇒τ Q→τ
_Q⇒_ = Q→τ *
field prop1 : ∀{p q} → p R q
→ ∀ p' → p P⇒l p' → Σ Q λ q' → q Q⇒l q' × p' R q'
prop2 : ∀{p q} → p R q
→ ∀ p' → p P⇒τ p' → Σ Q λ q' → q Q⇒ q' × p' R q'
prop1⁻¹ : ∀{p q} → p R q
→ ∀ q' → (x : q Q⇒l q') → Σ P λ p' → p P⇒l p' × p' R q'
prop2⁻¹ : ∀{p q} → p R q
→ ∀ q' → q Q⇒τ q' → Σ P λ p' → p P⇒ p' × p' R q'
open WeakBiSim
module _ {S I : Set} {{_ : IsData S}} {{_ : IsData I}} {sm : StateMachine S I}
where
open CEM {sm = sm} hiding (_—→_)
open import Bisimulation.Base {sm = sm}
open import Bisimulation.Soundness {sm = sm}
-- open import Bisimulation.Completeness {sm = sm}
open import Relation.Binary.PropositionalEquality
open import Data.Empty
{-
_—→_ : S → S → Set
s —→ s′ = Σ I λ i → Σ TxConstraints λ tx≡ → stepₛₘ s i ≡ pure (s′ , tx≡) × ¬ T (finalₛₘ s′)
-}
_—→∶_ : (Σ Ledger ValidLedger) → (Σ Ledger ValidLedger) → Set
(l , vl) —→∶ (l' , vl') = Σ Tx λ tx → Σ (IsValidTx tx l) λ vtx → Σ (l' ≡ tx ∷ l) λ p → subst ValidLedger p vl' ≡ vl ⊕ tx ∶- vtx
-- assume that all transaction constraints are satisfied
postulate
alwaysSatisfiable : ∀ {l s} {vl : ValidLedger l}
→ (tx≡ : TxConstraints) → (vl~s : vl ~ s) → Satisfiable {vl = vl} tx≡ vl~s
docare : Σ Ledger ValidLedger → Σ Ledger ValidLedger → Set
docare (l , vl) (l' , vl') =
Σ Tx λ tx → Σ (IsValidTx tx l) λ vtx → Σ (l' ≡ tx ∷ l) λ p →
subst ValidLedger p vl' ≡ vl ⊕ tx ∶- vtx
×
-- has an input that runs our validator
𝕍 ∈ map (_♯ ∘ validator) (inputs tx)
dontcare : Σ Ledger ValidLedger → Σ Ledger ValidLedger → Set
dontcare (l , vl) (l' , vl') =
Σ Tx λ tx → Σ (IsValidTx tx l) λ vtx → Σ (l' ≡ tx ∷ l) λ p →
subst ValidLedger p vl' ≡ vl ⊕ tx ∶- vtx
×
𝕍 ∉ map (_♯ ∘ validator) (inputs tx)
-- I need a lifting of completeness to sequences of transactions...
-- Interestingly it's only sequences of internal transactions that we need...
{-
completeness⇒ : ∀ {vl}{vl'}{s}
→ (dontcare *) vl vl' → proj₂ vl ~ s → proj₂ vl' ~ s
completeness⇒ nil p = p
completeness⇒ {l , vl} {l' , vl'} (cons (tx , vtx , x , x' , x'') p) q =
completeness⇒ p ([ {!!} , {!!} ]′ (completeness {!x'!} q))
~IsWeakBiSim : WeakBiSim
(λ (p : Σ Ledger ValidLedger) s → proj₂ p ~ s)
docare dontcare _—→_ (λ _ _ → ⊥)
prop1 ~IsWeakBiSim X (l , vl) (con vs (tx , vtx , p , p') vs') = {!completeness !}
prop2 ~IsWeakBiSim {l , vl}{Y} p (l' , vl') (con dcs dc dcs') =
_ , nil , {!!}
prop1⁻¹ ~IsWeakBiSim {l , vl}{s} X s' (con nil (i , tx≡ , p , p') nil) =
let tx , vtx , vl' , q , r = soundness p' p X (alwaysSatisfiable tx≡ X)
in (tx ∷ l , vl') , con nil (tx , vtx , refl , refl , here refl) nil , r
prop2⁻¹ ~IsWeakBiSim = λ x q' → λ{(con _ () _)}
-}