-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrafficRuleDetector.py
329 lines (241 loc) · 16.8 KB
/
TrafficRuleDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import argparse
import time
from pathlib import Path
from prometheus_client import Counter
import requests
from pprint import pprint
import random
import os
import glob
from sqlalchemy import false
regions = ['mx', 'in'] # Change to your country
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import os
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
files = glob.glob('output/*')
for f in files:
os.remove(f)
def detect(opt):
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
cudnn.benchmark = True
if '.mp4' in source or '.mp3' in source:
# Opens the inbuilt camera of laptop to capture video.
cap = cv2.VideoCapture(source)
framerate = 20
counter = 0
imgCounter = 0
existingOutputs = []
while(cap.isOpened()):
ret, frame = cap.read()
counter +=1
if counter== framerate:
print(counter)
counter =0
# This condition prevents from infinite looping
# incase video ends.
if ret == False:
break
try:
cv2.imwrite('frames/Frame.jpg', frame)
source = 'frames/Frame.jpg'
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
print(names)
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
print(det)
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in det:
c = int(cls) # integer class
label = f'{names[c]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[c], line_thickness=3)
x1,y1,x2,y2 = int(xyxy[0])-10, int(xyxy[1])-10, int(xyxy[2])+10, int(xyxy[3])+10
# print(names[c])
if names[c] == 'Rider':
print('\n\nProcessing for rider # ',xyxy)
rider_helmet_status = None
rider_lp_number = None
rider_lp_status = None
no_of_passengers = 0
try:
roi = im0s[y1:y2, x1:x2]
cv2.imwrite('rider.png',roi)
except Exception as e:
x1,y1,x2,y2 = int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])
roi = im0s[y1:y2, x1:x2]
cv2.imwrite('rider.png',roi)
rid_dataset = LoadImages('rider.png', img_size=imgsz, stride=stride)
rid_t0 = time.time()
for rid_path, rid_img, rid_im0s, rid_vid_cap in rid_dataset:
rid_img = torch.from_numpy(rid_img).to(device)
rid_img = rid_img.half() if half else rid_img.float() # uint8 to fp16/32
rid_img /= 255.0 # 0 - 255 to 0.0 - 1.0
if rid_img.ndimension() == 3:
rid_img = rid_img.unsqueeze(0)
rid_pred = model(rid_img, augment=opt.augment)[0]
# Apply NMS
rid_pred = non_max_suppression(rid_pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
# Apply Classifier
if classify:
rid_pred = apply_classifier(rid_pred, modelc, rid_img, rid_im0s)
# Process detections
for rid_i, rid_det in enumerate(rid_pred): # detections per image
rid_p, rid_s, rid_im0, rid_frame = rid_path, '', rid_im0s.copy(), getattr(rid_dataset, 'frame', 0)
rid_p = Path(rid_p) # to Path
rid_s += '%gx%g ' % rid_img.shape[2:] # print string
if len(rid_det):
# print(rid_det)
# Rescale boxes from img_size to im0 size
rid_det[:, :4] = scale_coords(rid_img.shape[2:], rid_det[:, :4], rid_im0.shape).round()
# Print results
for rid_c in rid_det[:, -1].unique():
rid_n = (rid_det[:, -1] == rid_c).sum() # detections per class
rid_s += f"{rid_n} {names[int(rid_c)]}{'s' * (rid_n > 1)}, " # add to string
# Write results
for *xyxy, rid_conf, cls in rid_det:
rid_c = int(cls) # integer class
rid_label = f'{names[rid_c]} {rid_conf:.2f}'
plot_one_box(xyxy, rid_im0, label=rid_label, color=colors[rid_c], line_thickness=3)
if names[rid_c] =="Helmet":
rider_helmet_status = True
no_of_passengers = no_of_passengers + 1
if names[rid_c] =="No Helmet":
rider_helmet_status = False
no_of_passengers = no_of_passengers + 1
if names[rid_c] =="LP":
try:
x1,y1,x2,y2 = int(xyxy[0])-50, int(xyxy[1])-50, int(xyxy[2])+50, int(xyxy[3])+50
lp_roi = roi[y1:y2, x1:x2]
cv2.imwrite('rider_lp.png',lp_roi)
except Exception as e:
x1,y1,x2,y2 = int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])
lp_roi = roi[y1:y2, x1:x2]
cv2.imwrite('rider_lp.png',lp_roi)
regions = ['mx', 'in'] # Change to your country
with open("rider_lp.png", 'rb') as fp:
response = requests.post(
'https://api.platerecognizer.com/v1/plate-reader/',
data=dict(regions=regions), # Optional
files=dict(upload=fp),
headers={'Authorization': 'Token 5cb2b9e847d8f063dc54b2fc7eac9c769c3ac4c5'})
try:
rider_lp_number = response.json()['results'][0]['plate']
except Exception as e:
pass
# print('\nALPR not able to detect',str(e))
fp.close()
os.remove('rider_lp.png')
rider_lp_status = True
# print(names[rid_c])q
# print(xyxy)
if rider_helmet_status:
print('\n\nRider wearing Helmet')
else:
print('\n\nRider not wearing Helmet')
if rider_lp_status:
print('\nRider having LP')
else:
print('\nRider not having LP\n\n')
print('\nPlate Number : ',rider_lp_number )
print('\nNo. of passengers : ',no_of_passengers )
# if rider_helmet_status == False or no_of_passengers>=3:
print('Voilence found')
if str(rider_helmet_status)+'\n'+str(rider_lp_status)+'\n'+str(rider_lp_number)+'\n'+str(no_of_passengers) not in existingOutputs:
cv2.imwrite('output/Det_'+str(imgCounter)+'.png',rid_im0)
existingOutputs.append(str(rider_helmet_status)+'\n'+str(rider_lp_status)+'\n'+str(rider_lp_number)+'\n'+str(no_of_passengers))
lines = 'output/Det_'+str(imgCounter)+'.png\n'+str(rider_helmet_status)+'\n'+str(rider_lp_status)+'\n'+str(rider_lp_number)+'\n'+str(no_of_passengers)+"\nNot"
with open('output/Det_'+str(imgCounter)+'.txt', 'w') as f:
f.writelines(lines)
imgCounter = imgCounter+1
cv2.imshow('Output', im0)
cv2.waitKey(1) # 1 millisecond
except Exception as e:
print(e)
else:
pass
cap.release()
cv2.destroyAllWindows()
os.system('python Detection.py')
def start_detecttion(file=None):
files = glob.glob('output/*')
for f in files:
os.remove(f)
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='./runs/train/finalModel/weights/best.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='dataset/t_image/', help='source')
parser.add_argument('--img-size', type=int, default=448, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
if file != None:
opt.source = file
detect(opt)
# start_detecttion(r"G:\4c208feb7a59c96176ee448f863d2ee5_GGoejskr.mp4"))