-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathbenchmark.py
377 lines (318 loc) · 14.4 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import os
import subprocess
from datetime import datetime
import yaml
from stresscli.commands.load_test import locust_runtests
from utils import get_service_cluster_ip, load_yaml
service_endpoints = {
"chatqna": {
"embedding": "/v1/embeddings",
"embedserve": "/v1/embeddings",
"retriever": "/v1/retrieval",
"reranking": "/v1/reranking",
"rerankserve": "/rerank",
"llm": "/v1/chat/completions",
"llmserve": "/v1/chat/completions",
"e2e": "/v1/chatqna",
},
"codegen": {"llm": "/generate_stream", "llmserve": "/v1/chat/completions", "e2e": "/v1/codegen"},
"codetrans": {"llm": "/generate", "llmserve": "/v1/chat/completions", "e2e": "/v1/codetrans"},
"faqgen": {"llm": "/v1/chat/completions", "llmserve": "/v1/chat/completions", "e2e": "/v1/faqgen"},
"audioqna": {
"asr": "/v1/audio/transcriptions",
"llm": "/v1/chat/completions",
"llmserve": "/v1/chat/completions",
"tts": "/v1/audio/speech",
"e2e": "/v1/audioqna",
},
"visualqna": {"lvm": "/v1/chat/completions", "lvmserve": "/v1/chat/completions", "e2e": "/v1/visualqna"},
}
def extract_test_case_data(content):
"""Extract relevant data from the YAML based on the specified test cases."""
# Extract test suite configuration
test_suite_config = content.get("test_suite_config", {})
# Ensure the namespace is a string before calling strip()
raw_namespace = test_suite_config.get("namespace")
namespace = (raw_namespace.strip() if isinstance(raw_namespace, str) else "") or "default"
return {
"examples": test_suite_config.get("examples", []),
"warm_ups": test_suite_config.get("warm_ups", 0),
"user_queries": test_suite_config.get("user_queries", []),
"random_prompt": test_suite_config.get("random_prompt"),
"test_output_dir": test_suite_config.get("test_output_dir"),
"run_time": test_suite_config.get("run_time", None),
"collect_service_metric": test_suite_config.get("collect_service_metric"),
"llm_model": test_suite_config.get("llm_model"),
"deployment_type": test_suite_config.get("deployment_type"),
"service_ip": test_suite_config.get("service_ip"),
"service_port": test_suite_config.get("service_port"),
"load_shape": test_suite_config.get("load_shape"),
"query_timeout": test_suite_config.get("query_timeout", 120),
"seed": test_suite_config.get("seed", None),
"namespace": namespace,
"all_case_data": {
example: content["test_cases"].get(example, {}) for example in test_suite_config.get("examples", [])
},
}
def create_run_yaml_content(service, base_url, bench_target, test_phase, num_queries, test_params):
"""Create content for the run.yaml file."""
# If a load shape includes the parameter concurrent_level,
# the parameter will be passed to Locust to launch fixed
# number of simulated users.
concurrency = 1
try:
load_shape = test_params["load_shape"]["name"]
load_shape_params = test_params["load_shape"]["params"][load_shape]
if load_shape_params and load_shape_params["concurrent_level"]:
if num_queries >= 0:
concurrency = max(1, num_queries // load_shape_params["concurrent_level"])
else:
concurrency = load_shape_params["concurrent_level"]
except KeyError as e:
# If the concurrent_level is not specified, load shapes should
# manage concurrency and user spawn rate by themselves.
pass
yaml_content = {
"profile": {
"storage": {"hostpath": test_params["test_output_dir"]},
"global-settings": {
"tool": "locust",
"locustfile": os.path.join(os.getcwd(), "stresscli/locust/aistress.py"),
"host": base_url,
"stop-timeout": test_params["query_timeout"],
"processes": 2,
"namespace": test_params["namespace"],
"bench-target": bench_target,
"service-metric-collect": test_params["collect_service_metric"],
"service-list": service.get("service_list", []),
"dataset": service.get("dataset", "default"),
"prompts": service.get("prompts", None),
"max-output": service.get("max_output", 128),
"seed": test_params.get("seed", None),
"llm-model": test_params["llm_model"],
"deployment-type": test_params["deployment_type"],
"load-shape": test_params["load_shape"],
},
"runs": [{"name": test_phase, "users": concurrency, "max-request": num_queries}],
}
}
# For the following scenarios, test will stop after the specified run-time
# 1) run_time is not specified in benchmark.yaml
# 2) Not a warm-up run
# TODO: According to Locust's doc, run-time should default to run forever,
# however the default is 48 hours.
if test_params["run_time"] is not None and test_phase != "warmup":
yaml_content["profile"]["global-settings"]["run-time"] = test_params["run_time"]
return yaml_content
def generate_stresscli_run_yaml(
example, case_type, case_params, test_params, test_phase, num_queries, base_url, ts
) -> str:
"""Create a stresscli configuration file and persist it on disk.
Parameters
----------
example : str
The name of the example.
case_type : str
The type of the test case
case_params : dict
The parameters of single test case.
test_phase : str [warmup|benchmark]
Current phase of the test.
num_queries : int
The number of test requests sent to SUT
base_url : str
The root endpoint of SUT
test_params : dict
The parameters of the test
ts : str
Timestamp
Returns
-------
run_yaml_path : str
The path of the generated YAML file.
"""
# Get the workload
if case_type == "e2e":
bench_target = f"{example}{'bench' if test_params['random_prompt'] else 'fixed'}"
else:
bench_target = f"{case_type}{'bench' if test_params['random_prompt'] else 'fixed'}"
# Generate the content of stresscli configuration file
stresscli_yaml = create_run_yaml_content(case_params, base_url, bench_target, test_phase, num_queries, test_params)
# Dump the stresscli configuration file
service_name = case_params.get("service_name")
run_yaml_path = os.path.join(
test_params["test_output_dir"], f"run_{service_name}_{ts}_{test_phase}_{num_queries}.yaml"
)
with open(run_yaml_path, "w") as yaml_file:
yaml.dump(stresscli_yaml, yaml_file)
return run_yaml_path
def create_and_save_run_yaml(example, deployment_type, service_type, service, base_url, test_suite_config, index):
"""Create and save the run.yaml file for the service being tested."""
os.makedirs(test_suite_config["test_output_dir"], exist_ok=True)
run_yaml_paths = []
# Add YAML configuration of stresscli for warm-ups
warm_ups = test_suite_config["warm_ups"]
if warm_ups is not None and warm_ups > 0:
run_yaml_paths.append(
generate_stresscli_run_yaml(
example, service_type, service, test_suite_config, "warmup", warm_ups, base_url, index
)
)
# Add YAML configuration of stresscli for benchmark
user_queries_lst = test_suite_config["user_queries"]
if user_queries_lst is None or len(user_queries_lst) == 0:
# Test stop is controlled by run time
run_yaml_paths.append(
generate_stresscli_run_yaml(
example, service_type, service, test_suite_config, "benchmark", -1, base_url, index
)
)
else:
# Test stop is controlled by request count
for user_queries in user_queries_lst:
run_yaml_paths.append(
generate_stresscli_run_yaml(
example, service_type, service, test_suite_config, "benchmark", user_queries, base_url, index
)
)
return run_yaml_paths
def get_service_ip(service_name, deployment_type="k8s", service_ip=None, service_port=None, namespace="default"):
"""Get the service IP and port based on the deployment type.
Args:
service_name (str): The name of the service.
deployment_type (str): The type of deployment ("k8s" or "docker").
service_ip (str): The IP address of the service (required for Docker deployment).
service_port (int): The port of the service (required for Docker deployment).
Returns:
(str, int): The service IP and port.
"""
if deployment_type == "k8s":
# Kubernetes IP and port retrieval logic
svc_ip, port = get_service_cluster_ip(service_name, namespace)
elif deployment_type == "docker":
# For Docker deployment, service_ip and service_port must be specified
if not service_ip or not service_port:
raise ValueError(
"For Docker deployment, service_ip and service_port must be provided in the configuration."
)
svc_ip = service_ip
port = service_port
else:
raise ValueError("Unsupported deployment type. Use 'k8s' or 'docker'.")
return svc_ip, port
def run_service_test(example, service_type, service, test_suite_config):
# Get the service name
service_name = service.get("service_name")
# Get the deployment type from the test suite configuration
deployment_type = test_suite_config.get("deployment_type", "k8s")
# Get the service IP and port based on deployment type
svc_ip, port = get_service_ip(
service_name,
deployment_type,
test_suite_config.get("service_ip"),
test_suite_config.get("service_port"),
test_suite_config.get("namespace"),
)
base_url = f"http://{svc_ip}:{port}"
endpoint = service_endpoints[example][service_type]
url = f"{base_url}{endpoint}"
print(f"[OPEA BENCHMARK] 🚀 Running test for {service_name} at {url}")
# Generate a unique index based on the current time
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create the run.yaml for the service
run_yaml_paths = create_and_save_run_yaml(
example, deployment_type, service_type, service, base_url, test_suite_config, timestamp
)
# Run the test using locust_runtests function
output_folders = []
for index, run_yaml_path in enumerate(run_yaml_paths, start=1):
print(f"[OPEA BENCHMARK] 🚀 The {index} time test is running, run yaml: {run_yaml_path}...")
output_folders.append(locust_runtests(None, run_yaml_path))
print(f"[OPEA BENCHMARK] 🚀 Test completed for {service_name} at {url}")
return output_folders
def process_service(example, service_type, case_data, test_suite_config):
service = case_data.get(service_type)
if service and service.get("run_test"):
print(f"[OPEA BENCHMARK] 🚀 Example: {example} Service: {service.get('service_name')}, Running test...")
return run_service_test(example, service_type, service, test_suite_config)
def check_test_suite_config(test_suite_config):
"""Check the configuration of test suite.
Parameters
----------
test_suite_config : dict
The name of the example.
Raises
-------
ValueError
If incorrect configuration detects
"""
# User must specify either run_time or user_queries.
if test_suite_config["run_time"] is None and len(test_suite_config["user_queries"]) == 0:
raise ValueError("Must specify either run_time or user_queries.")
def run_benchmark(report=False):
# Load test suit configuration
yaml_content = load_yaml("./benchmark.yaml")
# Extract data
parsed_data = extract_test_case_data(yaml_content)
test_suite_config = {
"user_queries": parsed_data["user_queries"],
"random_prompt": parsed_data["random_prompt"],
"run_time": parsed_data["run_time"],
"collect_service_metric": parsed_data["collect_service_metric"],
"llm_model": parsed_data["llm_model"],
"deployment_type": parsed_data["deployment_type"],
"service_ip": parsed_data["service_ip"],
"service_port": parsed_data["service_port"],
"test_output_dir": parsed_data["test_output_dir"],
"load_shape": parsed_data["load_shape"],
"query_timeout": parsed_data["query_timeout"],
"warm_ups": parsed_data["warm_ups"],
"seed": parsed_data["seed"],
"namespace": parsed_data["namespace"],
}
check_test_suite_config(test_suite_config)
# Mapping of example names to service types
example_service_map = {
"chatqna": [
"embedding",
"embedserve",
"retriever",
"reranking",
"rerankserve",
"llm",
"llmserve",
"e2e",
],
"codegen": ["llm", "llmserve", "e2e"],
"codetrans": ["llm", "llmserve", "e2e"],
"faqgen": ["llm", "llmserve", "e2e"],
"audioqna": ["asr", "llm", "llmserve", "tts", "e2e"],
"visualqna": ["lvm", "lvmserve", "e2e"],
}
all_output_folders = []
# Process each example's services
for example in parsed_data["examples"]:
case_data = parsed_data["all_case_data"].get(example, {})
service_types = example_service_map.get(example, [])
for service_type in service_types:
output_folder = process_service(example, service_type, case_data, test_suite_config)
if output_folder is not None:
all_output_folders.append(output_folder)
if report:
print(all_output_folders)
all_results = dict()
for each_bench_folders in all_output_folders:
for folder in each_bench_folders:
from stresscli.commands.report import get_report_results
results = get_report_results(folder)
all_results[folder] = results
print(f"results = {results}\n")
return all_results
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Read and parse JSON/YAML files and output JSON file")
parser.add_argument("--report", help="Return the perf", action="store_true")
args = parser.parse_args()
run_benchmark(report=args.report)