-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathparser.py
executable file
·522 lines (452 loc) · 19.2 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# -*- coding: utf-8 -*-
import json
import os
import sys
import csv
import xlrd
import zipfile
import cleaner
import fetch
import officetable
output_headers = ["county", "ward", "office", "district", "total votes",
"party", "candidate", "votes"]
first_header = {'ELECTION': 0, 'OFFICE TYPE': 3, 'COUNTY': 10,
'ELECTION DATE': 0}
"""Given first header, number of missing columns
{colA_header: num_missing}
(for year 2000 to 2010 single sheet spreadsheets)
"""
warnings = {
'pdf_skipped': False, # print(warning when skipping a PDF input file
}
def collect_columns(row, start_col):
"""Collect data from row starting at start_col, until empty or bad cell"""
data = []
for value in row[start_col:]:
if value in ('', 'dem'):
break
data.append(value)
return data
def split_candidate_party(candidates):
"""Split list of "<candidate> <party>" into separate lists"""
parties = []
for i, candidate in enumerate(candidates):
if candidate == 'Scattering':
parties.append('')
continue
for party in cleaner.party_recode:
head, __, __ = candidate.rpartition(party)
if head: # party found in candidate field
parties.append(party)
candidates[i] = head
break # next candidate
else: # no break
raise ValueError(
'Party not found in candidate "{}"'.format(candidate))
return candidates, parties
def process_xls_2000_to_2010(sheet):
"""Return list of records from spreadsheet in 2000-2010 formats"""
results = []
for rowx in range(sheet.nrows): # index to rows
row = sheet.row_values(rowx)
colA = str(row[0]).strip()
if colA in first_header:
# first row of block, collect candidate names
col_offset = first_header[colA] # number of missing columns
if col_offset > 0:
print("Note: section at row {} is missing {} columns".format(
rowx + 1, col_offset))
candidate_col = 17 - col_offset # first column of candidate data
candidates = collect_columns(row, candidate_col)
if colA == 'ELECTION DATE': # single header, extract parties
candidates, parties = split_candidate_party(candidates)
continue
elif colA in ('DATE', 'KEYWORD', 'NAME'):
# second row of block, collect party names
parties = collect_columns(row, candidate_col)
parties.extend([''] * (len(candidates) - len(parties)))
continue
elif colA in ('', 'SQL>') or colA.endswith('rows selected.'):
continue # not a data row
# not header nor blank: assume this is a data row
office_col = 4 - col_offset
if office_col >= 0:
office = row[office_col]
head, _, district = office.partition(', District ')
if district: # separator was found
office = head
district = district.split()[-1] # parse 'No. 1'
office_table.add_office(office)
else:
# Office column is missing from data
# This occurs for district 14 data in
# Libertarian_2008_FallElection_StateSenator_WardbyWard.xls
# (Not seen in any other file so far)
# Use previous office name
district = '14' # kludge to handle this special case
county = row[10 - col_offset]
ward_info = [row[col - col_offset] for col in (11, 13, 16)]
ward = '{} of {} {}'.format(*ward_info)
votes = collect_columns(row, candidate_col)
if isinstance(votes[0], basestring) and not votes[0].isdigit():
print(' row {}, col {}, data:"{}"'.format(
rowx, candidate_col, votes[0]))
raise ValueError('Non-digit chars in votes field')
# assume votes are strings of digits, or ints or floats
votes = map(int, votes)
total_votes = sum(votes)
for i, candidate in enumerate(candidates):
results.append([county, ward, office, district, total_votes,
parties[i], candidate, votes[i]])
return results
def process_xls_2012_DA_primary(sheet): # election id 411
"""Return list of records from 2012-08-14 District Attorney spreadsheet"""
fieldnames = ['ContestName', 'CountyName', 'CandidateName',
'ReportingUnitText', 'VoteCount']
col_headers = sheet.row_values(rowx=0) # first row
try:
# Find indexes of desired fields in spreadsheet
fieldindexes = [col_headers.index(fieldname)
for fieldname in fieldnames]
except ValueError:
print(fieldname, 'not found in spreadsheet column headers:')
print(col_headers)
raise
results = []
candidate_votes = []
previous_race_place = ()
candidates = []
for rowx in range(1, sheet.nrows): # index to rows
row = sheet.row_values(rowx)
office, county, candidate, ward, votes = [
row[col] for col in fieldindexes]
# split office and party, reorder office
parts = office.split(' - ')
assert len(parts) == 3
da, da_county, party = parts
assert da == 'District Attorney'
da_county = da_county.rstrip(' ')
assert da_county.endswith(' County')
office = da_county + ' ' + da # ____ County District Attorney
assert party in cleaner.party_recode.values()
office_table.add_office(office)
district = ''
race_place = county, ward, office, district, party
if previous_race_place and (race_place != previous_race_place):
results.extend(collect_results(
candidates, candidate_votes, previous_race_place))
candidates = []
candidate_votes = []
candidates.append(candidate)
candidate_votes.append(votes)
previous_race_place = race_place
results.extend(collect_results(candidates, candidate_votes, race_place))
return results
def collect_results(candidates, votes, race_place):
results = []
county, ward, office, district, party = race_place
total_votes = sum(votes)
for i, candidate in enumerate(candidates):
results.append([county, ward, office, district, total_votes, party,
candidate, votes[i]])
return results
def get_offices(sheet):
"""Extract office names from title sheet.
Return list of names and index of first sheet to process.
"""
# Determine file format by checking a few cells
# (0-origin row and col numbers)
row1_AB = sheet.row_values(rowx=1, start_colx=0, end_colx=2)
value_2A = sheet.cell_value(rowx=2, colx=0) if sheet.nrows > 2 else ''
if ''.join(row1_AB) == '':
# First two cols in row 1 are blank,
# is this 2011-04-05 Supreme Court election (id 421)?
office = 'JUSTICE OF THE SUPREME COURT'
if value_2A == office:
offices = [office]
sheet_index = 0 # start parsing data with sheet 0
else:
raise Exception('Unrecognized spreadsheet format')
else:
if value_2A == 'Canvass Detail': # probably 2010-09-14, id 425
row = 3 # offices start in row 3 (0-origin)
column = 0
else: # normal title sheet, offices in column A or B
row = 1
column = 1 if sheet.cell_value(rowx=1, colx=0) == '' else 0
offices = sheet.col_values(colx=column, start_rowx=row)
sheet_index = 1 # data starts on sheet 1
return offices, sheet_index
def process(filename, election):
try:
xlsfile = xlrd.open_workbook(filename)
except IOError as exc:
print('Failed to open input file {}'.format(filename))
print(exc)
return []
sheet0 = xlsfile.sheet_by_index(0)
sheet0_cell0A = sheet0.cell_value(rowx=0, colx=0) # 1st row, 1st column
sheet1_cell0A = None
if xlsfile.nsheets > 1:
sheet1 = xlsfile.sheet_by_index(1)
if sheet1.nrows > 0:
sheet1_cell0A = sheet1.cell_value(rowx=0, colx=0)
results = []
# Check for unusual file formats
if sheet1_cell0A == 'ElectionName':
results.append(process_xls_2012_DA_primary(sheet1))
# for an older-style header, process single sheet file
elif sheet0_cell0A in first_header:
results.append(process_xls_2000_to_2010(sheet0))
else:
offices, sheet_index = get_offices(sheet0)
for office in offices:
sheet = xlsfile.sheet_by_index(sheet_index)
results.append(parse_sheet(sheet, office, sheet_index, election))
sheet_index += 1
return results
def make_filepath(election):
# See http://docs.openelections.net/archive-standardization/
start_date = election['start_date'].replace("-","")
state = 'wi'
party = ''
special = 'special' if election['special'] else ''
race_type = election['race_type']
reporting_level = 'ward'
names = [start_date, state, party, special, race_type, reporting_level]
names = filter(bool, names) # remove empty names
filename = '__'.join(names) + '.csv'
print('Processing ' + filename)
year = start_date[:4]
if not os.path.isdir(year):
os.mkdir(year)
filepath = os.path.join(year, filename)
return filepath
def get_election_result(election, no_output=False):
filepath = make_filepath(election)
if not no_output:
outfile = open(filepath, 'wt')
wr = csv.writer(outfile)
wr.writerow(output_headers)
office_table.new_election()
direct_links = election['direct_links']
row = None
for direct_link in direct_links:
infilename = os.path.basename(direct_link)
cached_filename = os.path.join('local_data_cache', 'data', infilename)
results = process_file(cached_filename, election)
for result in results:
for row in result:
row = cleaner.clean_particular(election, row)
row = cleaner.clean_row(row)
if "Office Totals:" not in row and not no_output:
wr.writerow(row)
if row is None and not no_output: # no rows written, delete file
outfile.close()
os.remove(filepath)
print('No data parsed, output file removed')
office_table.tabulate_offices(election)
def process_file(cached_filename, election):
if cached_filename.lower().endswith('.pdf'):
if warnings['pdf_skipped']:
print('**** Skipping PDF file: ' + cached_filename)
return []
elif cached_filename.lower().endswith('.zip'):
archive = zipfile.ZipFile(cached_filename, 'r')
archive.extractall('tmp/')
archive.close()
results = []
# sort os.listdir() output because order differs on Linux vs MacOS
for filename in sorted(os.listdir('tmp/')):
local_file = 'tmp/' + filename
results = results + process_file(local_file, election)
os.remove(local_file)
return results
else: # Excel file
print('Opening ' + cached_filename)
return process(cached_filename, election)
CAND_COL = 3 # column holding first candidate
TOTAL_VOTES_HEADER = 'Total Votes Cast'
def extract_candidates(sheet, sheet_index):
""" Extract candidate names and parties from sheet.
Returns: candidates, parties, start_row
"""
# Search rows for Total Votes header, in column before candidates
for rowx in range(3, 12):
value = sheet.cell_value(rowx, CAND_COL - 1)
if value.strip() == TOTAL_VOTES_HEADER:
break
else: # loop not exited with break
raise Exception('"{}" header not found'.format(TOTAL_VOTES_HEADER))
# Total Votes header in rowx, candidates in this row or next
# Candidate row will have "SCATTERING" in it
row = sheet.row_values(rowx, start_colx=CAND_COL)
if "SCATTERING" in row:
candidates = row
parties = sheet.row_values(rowx - 1, start_colx=CAND_COL)
else:
parties = row
rowx += 1
candidates = sheet.row_values(rowx, start_colx=CAND_COL)
if "SCATTERING" in candidates:
# Fill in party if missing for "Scattering" candidate in primaries
### Check if election['race_type'] == 'primary'?
scattering_index = candidates.index("SCATTERING")
if parties[scattering_index] == '':
office_title = sheet.cell_value(rowx - 3, 0)
party = office_title.rpartition(' - ')[-1].strip().title()
party = cleaner.party_recode.get(party)
# assume a primary election if office ends in a party name
if party:
parties[scattering_index] = party
else:
print('##### Warning: SCATTERING missing in sheet {} "{}"'.format(
sheet_index, sheet.name))
start_row = rowx + 1 # first data row
return candidates, parties, start_row
def parse_office(office_string):
""" Parse office string, returning (office, district, party)
Office string comes in many formats:
LIEUTENANT GOVERNOR
US SENATOR - AMERICANS ELECT
PRESIDENT OF THE UNITED STATES - REPUBLICAN PARTY
ASSEMBLY - DISTRICT 99
STATE SENATE - DISTRICT 1 - REPUBLICAN
STATE SENATE DISTRICT 1 - REPUBLICAN
REPRESENTATIVE TO THE ASSEMBLY, DISTRICT 99 - REPUBLICAN
REPRESENTATIVE TO THE ASSEMBLY, DISTRICT 99 WISCONSIN GREEN
District Attorney - Fond Du Lac County
EAU CLAIRE COUNTY CIRCUIT COURT JUDGE, BRANCH 1
RECALL STATE SENATE-29
RECALL STATE SENATE-21 - DEMOCRATIC
STATE SENATOR DISTRICT 1-Democratic
"""
office = office_string.upper()
office = office.replace(u'\u2015','-') # change HORIZONTAL BAR to hyphen
office = office.replace(u'\u2013', '-') # change EN DASH to hyphen
if ' DISTRICT ' in office and ' DISTRICT ATTORNEY' not in office:
head, sep, tail = office.partition(' DISTRICT ')
office = head.strip(',- ')
district, sep, party = tail.partition(' ')
district, _, pty = district.partition('-') # handle "1-<party>"
party = pty + sep + party
party = party.strip('- ')
else:
district = ''
party = ''
# Handle D.A. followed by county, or remove party
head, sep, tail = office.partition(' -')
tail = tail.strip()
if tail:
if tail.endswith(' COUNTY'): # id 409, 2012-11-06 D.A.
head = head.strip()
assert head == 'DISTRICT ATTORNEY'
office = tail + ' ' + head # ____ County District Attorney
else:
office = head
party = tail
# Handle district after '-'
head, sep, tail = office.partition('-')
tail = tail.strip()
if tail.isdigit():
office = head
district = tail
office = office.strip()
party = party.replace(' PARTY', '')
party = party.strip('0123456789-') # remove years appended to office
office_table.add_office(office)
return office, district, party
def parse_sheet(sheet, office, sheet_index, election):
"""Return list of records for (string) office, extracted from spreadsheet.
This is used to parse Fall 2010 and later elections.
"""
office_was = office
office, district, party = parse_office(office)
if party and election['race_type'] == 'general':
print('##### Warning: skipping sheet "{}"'.format(sheet.name)),
print('in general election')
print( ' Party in office name indicates primary:', office_was)
return []
candidates, parties, start_row = extract_candidates(sheet, sheet_index)
offset = 0
if sheet_index == 0 and '' in candidates:
# probably this is 2011-04-05 Supreme Court election (id 421)
i = candidates.index('') + 1 # next after blank
if len(candidates) > i and candidates[i] == TOTAL_VOTES_HEADER:
# this is the second total votes header, for recounts
offset = i + 1 # column offset to get recount data
candidates = candidates[offset:]
parties = parties[offset:]
cand_col = CAND_COL + offset # 1st candidate is in this column
county = ''
output = []
for rowx in range(start_row, sheet.nrows):
row = sheet.row_values(rowx)
if "Totals" in row[0] or "Totals" in row[1]:
continue
col0 = row[0].strip()
if col0 != '':
county = col0
ward = row[1].strip()
total_votes = row[2 + offset]
candidate_votes = row[cand_col:]
for index, candidate in enumerate(candidates):
if candidate: # column not empty
party = parties[index]
output.append([county, ward, office, district, total_votes,
party, candidate, candidate_votes[index]])
return output
def get_all_results(ids, no_output=False):
"""Process results for election ids given;
if none given, process all ids in metadata.
"""
metadata = fetch.read_cached_metadata()
for election in metadata['objects']:
if ids and election.get('id') not in ids:
continue # filter by ids list if not empty
print('id {id}'.format(**election))
get_election_result(election, no_output)
def get_result_for_json(filename):
with open(filename) as jsonfile:
election = json.load(jsonfile)
get_election_result(election)
# API url: for debugging, metadata is now read from cached file
# http://openelections.net/api/v1/election/?format=json&limit=0&state__postal=WI
"""
Elections with no files available:
448, 664, 674, 689
Election results available only in PDF files:
437 (2006-09-12) PDF and excel in zip files, some offices only PDF
444 (2004-11-02) has xls files for President and Senate,
only PDFs for House, State Senate, State Assembly, District Attorney
443, 445, 446, 447,
685, 1756
Single sheet spreadsheets, 2002-2010 format, two-line repeated headings:
426-442, 1577, 1578 ...
Single sheet spreadsheets, 2002-2010 format, single-line heading:
1845 (2000-11-07), 2 of 6 xls files have this format
2011-04-05 general election (id 421) Supreme Court xls has a
single sheet with no title sheet
WARD_BY_WARD_FOR_SPRING_2011_ELECTION_AND_RECOUNT.xls
xls files with offices in second column of title sheet:
1573, 1574, 1576, 1658, 1659, 1660, 1661
"""
if __name__ == '__main__':
usage_msg = """Usage: {} [-n] <list of ids>]
Parse input files and process results for listed ids.
Omit ids to process all ids for state.
Use option -n for no results output.
Uses elections metadata from file "{}".
""".format(sys.argv[0], fetch.metadata_filepath)
args = sys.argv[1:]
no_output = (args[:1] == ['-n'])
if no_output:
args = args[1:]
if not all(map(str.isdigit, args)):
print(usage_msg)
print('Args must be positive integers (election ids)')
else:
office_table = officetable.OfficeTable()
ids = map(int, args)
get_all_results(ids, no_output=no_output)
office_table.print_summary()