Skip to content
This repository has been archived by the owner on Nov 12, 2024. It is now read-only.

Latest commit

 

History

History
33 lines (17 loc) · 719 Bytes

File metadata and controls

33 lines (17 loc) · 719 Bytes

Simple Schnorr Multi-Signature

Key Generation

Every signer generates a key pair $(x_i,X_i)=(x_i,g^{x_i})$, set $L=\lbrace X_1,X_2,...X_n\rbrace$.

Sign

  1. Every signer computes $a_i=H_0(L,X_i)$.

  2. Aggregated public key $\widetilde{X}=\prod_{i=1}^{n}X_i^{a_i}$.

  3. Every signer generates a radom $r_i$ and computes $R_i=g^{r_i}$.

  4. Specific signer computes:

    1. $R=\sum_{i=1}^{n}R_i$.

    2. $c=H_1(\widetilde{X},R,m)$.

    3. $s_1=r_1+ca_1x_1 \text{ mod } p$.

  5. Specific signer computes $s=\sum_{i=1}^ns_i \text{ mod }p$.

  6. Output $\sigma=(R,s)$.

Verify

  1. Computes $a_i=H_0(L,X_i)$.

  2. Computes $c=H_1(\widetilde{X},R,m)$.

  3. Accepts if $g^s=R\prod_{i=1}^nX_i^{a_ic}=R\widetilde{X}^c$.