Every signer generates a key pair
-
Every signer computes
$a_i=H_0(L,X_i)$ . -
Aggregated public key
$\widetilde{X}=\prod_{i=1}^{n}X_i^{a_i}$ . -
Every signer generates a radom
$r_i$ and computes$R_i=g^{r_i}$ . -
Specific signer computes:
-
$R=\sum_{i=1}^{n}R_i$ . -
$c=H_1(\widetilde{X},R,m)$ . -
$s_1=r_1+ca_1x_1 \text{ mod } p$ .
-
-
Specific signer computes
$s=\sum_{i=1}^ns_i \text{ mod }p$ . -
Output
$\sigma=(R,s)$ .
-
Computes
$a_i=H_0(L,X_i)$ . -
Computes
$c=H_1(\widetilde{X},R,m)$ . -
Accepts if
$g^s=R\prod_{i=1}^nX_i^{a_ic}=R\widetilde{X}^c$ .