Skip to content
This repository has been archived by the owner on Nov 12, 2024. It is now read-only.

Latest commit

 

History

History
21 lines (11 loc) · 598 Bytes

File metadata and controls

21 lines (11 loc) · 598 Bytes

Linkable Ring Signature with Unconditional Anonymity

Sign

  1. Compute $e=H(event)$ and $t=e^x$.

  2. Randomly pick $r_x, r_y, c_1 ,..., c_{s-1}, c_{s+1},...,c_n \in_R \mathbb{Z}_p$ and compute

    1. $K=g^{r_x}h^{r_y}\prod_{i=1,i\neq s}^nZ_i^{c_i}$.

    2. $K'=e^{r_x}t^{\sum_{i=1,i\neq s}^nc_i}$.

  3. Find $c_s$ such that $c_1+...+c_n$ mod $p$ $=H'(\mathcal{Y},event,t,M,K,K')$.

  4. Compute $\tilde{x}=r_x-c_sx$ mod $p$, $\tilde{y}=r_y-c_sy$ mod $p$.

Verify

  1. On input $(event,\mathcal{Y},M,\sigma)$, first compute $e=H(event)$ and $c_0$.

  2. Then check $\sum_{i=1}^nc_i$ mod $p=c_0$.