-
Compute
$e=H(event)$ and$t=e^x$ . -
Randomly pick
$r_x, r_y, c_1 ,..., c_{s-1}, c_{s+1},...,c_n \in_R \mathbb{Z}_p$ and compute-
$K=g^{r_x}h^{r_y}\prod_{i=1,i\neq s}^nZ_i^{c_i}$ . -
$K'=e^{r_x}t^{\sum_{i=1,i\neq s}^nc_i}$ .
-
-
Find
$c_s$ such that$c_1+...+c_n$ mod$p$ $=H'(\mathcal{Y},event,t,M,K,K')$ . -
Compute
$\tilde{x}=r_x-c_sx$ mod$p$ ,$\tilde{y}=r_y-c_sy$ mod$p$ .
-
On input
$(event,\mathcal{Y},M,\sigma)$ , first compute$e=H(event)$ and$c_0$ . -
Then check
$\sum_{i=1}^nc_i$ mod$p=c_0$ .