-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdbscan_ratio.py
executable file
·616 lines (512 loc) · 29 KB
/
dbscan_ratio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import pandas as pd
from sklearn.cluster import DBSCAN
import numpy as np
import directories as directories
import matplotlib
# matplotlib.use("agg")
import matplotlib.pyplot as plt
################################################################################
# Define the niceplot function from Gregor #####################################
def niceplot(fig, labelsize=20, tight_layout=True, remove_firstandlast_tick = True):
import matplotlib.ticker as ticker
ax_list = fig.axes
for ax in ax_list:
ax.tick_params(axis='both', which='major', labelsize=labelsize)
ymin, ymax = ax.get_ylim()
xmin, xmax = ax.get_xlim()
ax.tick_params(direction="in", which='major', right=True, top=True, length=10, width=2)
ax.tick_params(direction="in", which='minor', right=True, top=True, length=5, width=1)
try:
ax.yaxis.set_minor_locator(ticker.MultipleLocator((ax.get_yticks()[1]-ax.get_yticks()[0])/5.))
ax.xaxis.set_minor_locator(ticker.MultipleLocator((ax.get_xticks()[1]-ax.get_xticks()[0])/5.))
except:
pass
if remove_firstandlast_tick == True:
ax.set_xticks(ax.get_xticks()[1:-1])
ax.set_yticks(ax.get_yticks()[1:-1])
else:
ax.set_xticks(ax.get_xticks())
ax.set_yticks(ax.get_yticks())
if tight_layout == True:
fig.set_tight_layout(True)
else:
pass
################################################################################
class dbscan_method():
ratio = 0.9
iterations = 10
normalization_constant = 10
use_normalized_data = True
colormap = 'plasma'
# matplotlib.rcParams['text.usetex'] = True
save_plots = True
save_plots_dir = directories.directories().figures
# DBSCAN parameters - can be overwritten from within the class
min_eps = 0.1
max_eps = 0.75
min_minpts = 25
max_minpts = 125
""" Apply DBSCAN to the results from the t-SNE analysis.
The iterations parameter corresponds to how many values of epsilon
and min pts will be used for the exploration of the parameter space
The following parameters will be added to the instance after the main
algorithm is run once (names are self-explanatory):
self.parameter_space
self.optimized_eps
self.optimized_minpts
self.dbscan_labels
self.recovery_ratio_optimized
"""
def __init__(self, tsne_x, tsne_y, real_labels, stellar_parameters,
spectral_range, SNR, perplexity):
self.tsne_x = tsne_x
self.tsne_y = tsne_y
self.real_labels = real_labels
# self.min_eps = min_eps
# self.max_eps = max_eps
# self.min_minpts = min_minpts
# self.max_minpts = max_minpts
self.stellar_parameters = stellar_parameters
self.spectral_ranges = spectral_range
self.SNR = SNR
self.perplexity = perplexity
# These parameters will only be available after running the corresponding
# functions, which are defined underneath
self.normalized_tsne_x = []
self.normalized_tsne_y = []
def normalize_data_tSNE(self):
""" Returns the t-SNE coordinates normalized between -1 and 1 times a
predefined constant k. """
self.normalized_tsne_x = (2 * (self.tsne_x - np.min(self.tsne_x)) /
(np.max(self.tsne_x) - np.min(self.tsne_x))
- 1) * self.normalization_constant
self.normalized_tsne_y = (2 * (self.tsne_y - np.min(self.tsne_y)) /
(np.max(self.tsne_y) - np.min(self.tsne_y))
- 1) * self.normalization_constant
def find_binaries_ratio_dbscan(self, labels_DBSCAN):
""" Find binaries from within the t-SNE maps using the ratio
prescription. Input has to be a value of epsilon and minPts, possibly
optimized using the function below. """
# Create the DBSCAN labels to search binaries for
# Find all the unique labels found by DBSCAN
unique_labelsDBSCAN = np.unique(labels_DBSCAN)
# Initialize array to save the corrected labels
ratioLabels = np.zeros(len(self.real_labels))
# Loop over the unique labels and compare them to the ones manually defined
for DBSCANLabel in unique_labelsDBSCAN:
# To avoid the points DBSCAN marked as noise
if DBSCANLabel != -1:
# Get the real labels corresponding to the elements of DBSCANLabel
filtered_realLabels = self.real_labels[labels_DBSCAN == DBSCANLabel]
# Get the indexes to save the corrected label in the corrected spot
indexes_filtered_realLabels = np.argwhere(
[labels_DBSCAN == DBSCANLabel])[:, 1]
# Get the amount of real singles and real binaries in the filtered array
filtered_singles = len(
filtered_realLabels[filtered_realLabels == 0])
filtered_binaries = len(
filtered_realLabels[filtered_realLabels == 1])
# Get the ratio
try:
ratio_ = float(filtered_binaries) / \
float((filtered_singles + filtered_binaries))
except ZeroDivisionError:
pass
if ratio_ >= self.ratio:
# 1 as the binary label
np.add.at(ratioLabels, indexes_filtered_realLabels, 1)
elif filtered_singles == 0:
# 1 as the binary label
np.add.at(ratioLabels, indexes_filtered_realLabels, 1)
elif filtered_binaries == 0:
# 0 as the binary label
np.add.at(ratioLabels, indexes_filtered_realLabels, 0)
else:
# 0 as the binary label
np.add.at(ratioLabels, indexes_filtered_realLabels, 0)
else:
# Mark noise as singles
np.add.at(ratioLabels, np.argwhere(labels_DBSCAN == -1), 0)
return ratioLabels
def explore_parameter_space(self):
""" Find binary stars from within the t-SNE maps using DBSCAN and a
predefined ratio of binaries per cluster. """
# Define the arrays to loop
epsilon_explore_parameter_space = np.linspace(
self.min_eps, self.max_eps, self.iterations)
minpts_explore_parameter_space = np.linspace(
self.min_minpts, self.max_minpts, self.iterations)
# The sum of the normalized arrays must be zero if nothing has been
# assigned to them, as they are initialized as empty lists.
if (self.use_normalized_data == True and
len(self.normalized_tsne_x) + len(self.normalized_tsne_y) == 0):
# Call the function as it hadn't been called before
self.normalize_data_tSNE()
tSNEData_ = pd.DataFrame(
{'x': self.normalized_tsne_x, 'y': self.normalized_tsne_y})
print('Exploring DBSCAN using the normalized data...')
# If the data has been normalized before, then the sum won't be zero
# and the normalized data will be used directly without calling the function
elif (self.use_normalized_data == True and
len(self.normalized_tsne_x) + len(self.normalized_tsne_y) != 0):
tSNEData_ = pd.DataFrame(
{'x': self.normalized_tsne_x, 'y': self.normalized_tsne_y})
print('Exploring DBSCAN using the normalized data...')
elif self.use_normalized_data == False:
tSNEData_ = pd.DataFrame({'x': self.tsne_x, 'y': self.tsne_y})
print('Exploring DBSCAN...')
# Initialize the counting
exploration_results = []
i = 0
# Loop over all of the possible combinations in order to obtain better statistics
for epsilon in epsilon_explore_parameter_space:
for min_pts in minpts_explore_parameter_space:
# Calculate DBSCAN
labelsDBSCAN = DBSCAN(
eps=epsilon, min_samples=min_pts).fit(tSNEData_).labels_
# Get the labels from the above function
ratioLabels = self.find_binaries_ratio_dbscan(labelsDBSCAN)
# Need to count the amount of singles and binaries after the DBSCAN ratio method
amountSingles = len(ratioLabels[ratioLabels == 0])
amountBinary = len(ratioLabels[ratioLabels == 1])
exploration_results.append(
(amountSingles, amountBinary, epsilon, min_pts))
recovery = amountBinary / \
len(self.real_labels[self.real_labels == 1])
# Counter
i += 1
if i%100 == 0:
print('Step', i,
':: current mode: epsilon %.2f and min pts %.2f' % (epsilon, min_pts))
# Convert the results into a dataframe for easier handling
self.parameter_space = pd.DataFrame(exploration_results)
self.parameter_space.columns = ['Singles', 'binaries', 'eps', 'minpts']
# Add the column for the recovery ratio
self.parameter_space['recovery_ratio'] = self.parameter_space['binaries'] / \
len(self.real_labels[self.real_labels == 1])
# Even if this throws an error, the file saving is alrerady done
try:
# Prepare variables for the return
self.optimized_recovery_ratio = max(
self.parameter_space['recovery_ratio'])
mask_optimize = self.parameter_space['recovery_ratio'] == self.optimized_recovery_ratio
self.optimized_eps = float(
self.parameter_space['eps'][mask_optimize].values)
self.optimized_minpts = float(
self.parameter_space['minpts'][mask_optimize].values)
print("Saving the labels for the optimized method...")
self.labels_dbscan = DBSCAN(eps=self.optimized_eps,
min_samples=self.optimized_minpts).fit(tSNEData_).labels_
self.ratio_labels = self.find_binaries_ratio_dbscan(self.labels_dbscan)
except:
print("There was an error calcualting the optimized parameter: to be done manually")
def get_variables_from_imported_data(self):
best_dbscan_mode = self.parameter_space[self.parameter_space['recovery_ratio']
== np.max(self.parameter_space['recovery_ratio'])]
self.labels_dbscan = DBSCAN(eps=best_dbscan_mode['eps'].values[0],
min_samples=best_dbscan_mode['minpts'].values[0]).fit(np.array((self.normalized_tsne_x,
self.normalized_tsne_y)).T).labels_
self.ratio_labels = self.find_binaries_ratio_dbscan(
self.labels_dbscan)
self.optimized_eps = best_dbscan_mode['eps'].values[0]
self.optimized_minpts = best_dbscan_mode['minpts'].values[0]
self.optimized_recovery_ratio = best_dbscan_mode['recovery_ratio'].values[0]
def plot_parameter_space(self):
""" Plots a 2-D map of the explore DBSCAN's parameter space. """
self.get_variables_from_imported_data()
# x = eps, y = min samples
x, y = np.meshgrid(np.linspace(self.min_eps, self.max_eps, self.iterations),
np.linspace(self.min_minpts,
self.max_minpts,
self.iterations))
z = (self.parameter_space['recovery_ratio'].values).reshape(x.shape)
mask_recovery = self.parameter_space['recovery_ratio'] == np.max(
self.parameter_space['recovery_ratio'])
fig, ax = plt.subplots(2, 2, figsize=[20, 10])
plt.suptitle(('DBSCAN parameter space: {} iterations in {} range, perplexity' +
' {} and SNR of {}. Mode eps = {}, min pts = {} and ratio {}').format(
self.iterations, self.spectral_ranges, self.perplexity, self.SNR,
np.round(self.optimized_eps,2), np.round(self.optimized_minpts,3),
self.ratio))
max_recovery_per_epsilon = [np.max(z[i]) for i in range(self.iterations)]
ax[0, 0].plot(y[:, 0], max_recovery_per_epsilon, lw=1.25, alpha=0.85, c='k')
ax[0, 0].set_xlabel('min pts')
ax[0, 0].set_ylabel('Recovery')
ax[0, 0].grid()
max_recovery_per_minpts = [np.max(z[:, i]) for i in range(self.iterations)]
ax[1, 1].plot(x[0], max_recovery_per_minpts, lw=1.25, alpha=0.85, c='k')
ax[1, 1].set_xlabel('epsilon')
ax[1, 1].set_ylabel('Recovery')
ax[1, 1].grid()
contour = ax[1, 0].contourf(y, x, z.T, 75, cmap='plasma')
ax[1, 0].plot(self.optimized_minpts, self.optimized_eps,
marker='x', c='k', alpha=0.85)
# cbaxes = fig.add_axes([0.8, 0.1, 0.03, 0.8])
# cb = plt.colorbar(ax1, cax = cbaxes)
plt.colorbar(contour, ax=ax[1,0])
ax[1, 0].set_ylabel('epsilon')
ax[1, 0].set_xlabel('min pts')
fig.delaxes(ax[0, 1]) # Removes the extra plot
niceplot(fig)
if self.save_plots == True:
plt.savefig(self.save_plots_dir + ('DBSCAN_parameter_space_range_{}_perplexity_{}'
+ '_SNRof{}_iterations_{}_ratio_{}.png').format(self.spectral_ranges,
self.perplexity, self.SNR, self.iterations,self.ratio), dpi=150)
def plot_tsne_maps(self):
""" Plots a selection of the t-SNE maps, parameter file needs
to be input as well. """
self.get_variables_from_imported_data()
mask_noise = self.labels_dbscan == -1
mask_cluster = self.labels_dbscan != -1
mask_singles = self.real_labels == 0
mask_binaries = self.real_labels == 1
mask_recovered_binaries = self.ratio_labels == 1
mask_non_recovered_binaries = self.ratio_labels == 0
matplotlib.rcParams.update({'font.size': 18})
fig, ax = plt.subplots(2, 3, figsize=[30, 20], tight_layout=True)
# plt.suptitle((r't-SNE analysis of {} single and {} binary stars' +
# ', with perplexity {} in the {} spectral' +
# 'range, SNR = {} and ratio {}').format(len(self.tsne_x[mask_singles]),
# len(self.tsne_x[mask_binaries]), self.perplexity,
# self.spectral_ranges, self.SNR, self.ratio))
ax[0, 0].set_title(r't-SNE map')
ax[0, 0].scatter(self.tsne_x[mask_singles],
self.tsne_y[mask_singles], c='grey', s=2, label='Single')
ax[0, 0].scatter(self.tsne_x[mask_binaries],
self.tsne_y[mask_binaries], c='red', s=2, label='Binary')
legend1 = ax[0, 0].legend(loc='lower right')
legend1.legendHandles[0]._sizes = [30]
legend1.legendHandles[1]._sizes = [30]
ax[0, 1].set_title((r'Recovered binary'+
' systems: {} of {}').format(len(self.tsne_x[mask_recovered_binaries]),
len(self.real_labels[self.real_labels == 1])))
ax[0, 1].scatter(self.tsne_x[mask_non_recovered_binaries],
self.tsne_y[mask_non_recovered_binaries],
s=2, marker='.', c='grey', label='Noise')
ax[0, 1].scatter(self.tsne_x[mask_recovered_binaries],
self.tsne_y[mask_recovered_binaries], s=2, marker='.',
c=self.ratio_labels[mask_recovered_binaries],
label='DBSCAN Clusters')
legend2 = ax[0, 1].legend(loc='lower right')
legend2.legendHandles[0]._sizes = [30]
# ax[0, 2].set_title('$L_{B} \, / \, L_{A}$')
ax[0, 2].scatter(self.tsne_x[mask_singles], self.tsne_y[mask_singles],
cmap=self.colormap, c='grey', s=2, label='Single')
a = ax[0, 2].scatter(self.tsne_x[mask_binaries], self.tsne_y[mask_binaries],
c=self.stellar_parameters['lum ratio'][mask_binaries], s=2,
cmap=self.colormap, label='Single')
cbar_1 = plt.colorbar(a, ax=ax[0, 2])
cbar_1.ax.set_ylabel(r'$L_{B} \, / \, L_{A}$', labelpad=20)
# ax[1, 0].set_title('T$_{eff} \, \, [K]$ primary')
b = ax[1, 0].scatter(self.tsne_x[mask_singles], self.tsne_y[mask_singles],
c=self.stellar_parameters['teff_A'][mask_singles],
cmap=self.colormap,
s=2, label='Single')
ax[1, 0].scatter(self.tsne_x[mask_binaries], self.tsne_y[mask_binaries],
c=self.stellar_parameters['teff_A'][mask_binaries],
cmap=self.colormap,
s=2, label='Single')
cbar_2 = plt.colorbar(b, ax=ax[1, 0])
cbar_2.ax.set_ylabel(r'T$_{eff} \, \, [K]$ primary', labelpad=20)
# ax[1, 1].set_title('$log \, g \, \, [dex]$ primary')
c = ax[1, 1].scatter(self.tsne_x[mask_singles], self.tsne_y[mask_singles],
c=self.stellar_parameters['logg_A'][mask_singles],
cmap=self.colormap,
s=2, label='Single')
ax[1, 1].scatter(self.tsne_x[mask_binaries], self.tsne_y[mask_binaries],
c=self.stellar_parameters['logg_A'][mask_binaries],
cmap=self.colormap,
s=2, label='Single')
cbar_3 = plt.colorbar(c, ax=ax[1, 1])
cbar_3.ax.set_ylabel(r'$log \, g \, \, [dex]$ primary', labelpad=20)
# ax[1, 2].set_title('$|\Delta v _{rad}| \, \, [m/s] $')
ax[1, 2].scatter(self.tsne_x[mask_singles], self.tsne_y[mask_singles],
c='grey', s=2, label='Single')
d = ax[1, 2].scatter(self.tsne_x[mask_binaries], self.tsne_y[mask_binaries],
c=self.stellar_parameters['rad_vel'][mask_binaries],
cmap=self.colormap,
s=2, label='Single')
cbar_4 = plt.colorbar(d, ax=ax[1, 2])
cbar_4.ax.set_ylabel(r'$|\Delta v _{rad}| \, \, [m/s] $', labelpad=20)
niceplot(fig)
if self.save_plots == True:
plt.savefig((self.save_plots_dir + ('tSNEmaps+DBSCAN_range_{}'+
'_perplexity_{}_SNRof{}_iterations_{}_ratio_{}.png')).format(self.spectral_ranges,
self.perplexity, self.SNR, self.iterations, self.ratio), dpi=200)
def plot_tsne_maps_raw(self):
""" Plots a selection of the t-SNE maps, parameter file needs
to be input as well. """
self.get_variables_from_imported_data()
mask_noise = self.labels_dbscan == -1
mask_cluster = self.labels_dbscan != -1
mask_singles = self.real_labels == 0
mask_binaries = self.real_labels == 1
mask_recovered_binaries = self.ratio_labels == 1
mask_non_recovered_binaries = self.ratio_labels == 0
print(len(self.tsne_x[mask_singles]), len(self.tsne_x[mask_binaries]))
matplotlib.rcParams.update({'font.size': 18})
fig, ax = plt.subplots(1, 2, figsize=[30, 15], tight_layout=True)
ax[0].scatter(self.tsne_x[mask_singles],
self.tsne_y[mask_singles], c='grey', s=2, label='Single')
ax[0].scatter(self.tsne_x[mask_binaries],
self.tsne_y[mask_binaries], c='red', s=2, label='Binary')
legend1 = ax[0].legend(loc='lower right')
legend1.legendHandles[0]._sizes = [30]
legend1.legendHandles[1]._sizes = [30]
ax[1].set_title((r'Recovered binary'+
' systems: {} of {}').format(len(self.tsne_x[mask_recovered_binaries]),
len(self.real_labels[self.real_labels == 1])))
ax[1].scatter(self.tsne_x[mask_non_recovered_binaries],
self.tsne_y[mask_non_recovered_binaries],
s=2, c='grey', label='Noise')
ax[1].scatter(self.tsne_x[mask_recovered_binaries],
self.tsne_y[mask_recovered_binaries], s=2,
c=self.ratio_labels[mask_recovered_binaries],
label='DBSCAN Clusters')
legend2 = ax[1].legend(loc='lower right')
legend2.legendHandles[0]._sizes = [30]
niceplot(fig, 18)
if self.save_plots == True:
plt.savefig((self.save_plots_dir + ('tSNEmaps_raw_range_{}'+
'_perplexity_{}_SNRof{}_iterations_{}_ratio_{}.png')).format(self.spectral_ranges,
self.perplexity, self.SNR, self.iterations, self.ratio), dpi=150)
def plot_tsne_maps_stellar_parameters(self):
""" Plots a selection of the t-SNE maps, parameter file needs
to be input as well. """
self.get_variables_from_imported_data()
mask_noise = self.labels_dbscan == -1
mask_cluster = self.labels_dbscan != -1
mask_singles = self.real_labels == 0
mask_binaries = self.real_labels == 1
mask_recovered_binaries = self.ratio_labels == 1
mask_non_recovered_binaries = self.ratio_labels == 0
matplotlib.rcParams.update({'font.size': 18})
fig, ax = plt.subplots(2, 2, figsize=[25, 20], tight_layout=True)
ax[0, 0].scatter(self.tsne_x[mask_singles], self.tsne_y[mask_singles],
cmap=self.colormap, c='grey', s=2, label='Single')
a = ax[0, 0].scatter(self.tsne_x[mask_binaries], self.tsne_y[mask_binaries],
c=self.stellar_parameters['lum ratio'][mask_binaries], s=2,
cmap=self.colormap, label='Single')
cbar_1 = plt.colorbar(a, ax=ax[0, 0])
cbar_1.ax.set_ylabel(r'$L_{B} \, / \, L_{A}$', labelpad=20)
# ax[1, 0].set_title('T$_{eff} \, \, [K]$ primary')
b = ax[1, 0].scatter(self.tsne_x[mask_singles], self.tsne_y[mask_singles],
c=self.stellar_parameters['teff_A'][mask_singles],
cmap=self.colormap,
s=2, label='Single')
ax[1, 0].scatter(self.tsne_x[mask_binaries], self.tsne_y[mask_binaries],
c=self.stellar_parameters['teff_A'][mask_binaries],
cmap=self.colormap,
s=2, label='Single')
cbar_2 = plt.colorbar(b, ax=ax[1, 0])
cbar_2.ax.set_ylabel(r'T$_{eff} \, \, [K]$ primary', labelpad=20)
# ax[1, 1].set_title('$log \, g \, \, [dex]$ primary')
c = ax[1, 1].scatter(self.tsne_x[mask_singles], self.tsne_y[mask_singles],
c=self.stellar_parameters['logg_A'][mask_singles],
cmap=self.colormap,
s=2, label='Single')
ax[1, 1].scatter(self.tsne_x[mask_binaries], self.tsne_y[mask_binaries],
c=self.stellar_parameters['logg_A'][mask_binaries],
cmap=self.colormap,
s=2, label='Single')
cbar_3 = plt.colorbar(c, ax=ax[1, 1])
cbar_3.ax.set_ylabel(r'$log \, g \, \, [dex]$ primary', labelpad=20)
# ax[1, 2].set_title('$|\Delta v _{rad}| \, \, [m/s] $')
ax[0, 1].scatter(self.tsne_x[mask_singles], self.tsne_y[mask_singles],
c='grey', s=2, label='Single')
d = ax[0, 1].scatter(self.tsne_x[mask_binaries], self.tsne_y[mask_binaries],
c=self.stellar_parameters['rad_vel'][mask_binaries],
cmap=self.colormap,
s=2, label='Single')
cbar_4 = plt.colorbar(d, ax=ax[0, 1])
cbar_4.ax.set_ylabel(r'$|\Delta v _{rad}| \, \, [m/s] $', labelpad=20)
niceplot(fig)
if self.save_plots == True:
plt.savefig((self.save_plots_dir + ('tSNEmaps_stellarparamters_range_{}'+
'_perplexity_{}_SNRof{}_iterations_{}_ratio_{}.png')).format(self.spectral_ranges,
self.perplexity, self.SNR, self.iterations, self.ratio), dpi=150)
def plot_histograms(self):
self.normalize_data_tSNE()
self.get_variables_from_imported_data()
retrieved_binaries = self.stellar_parameters[self.ratio_labels == 1]
# Get the binaries that were not properly retrieved
non_retrievedBinaries = self.stellar_parameters[(
self.stellar_parameters['binarity'] == 1) & (self.ratio_labels == 0)]
all_Binaries = self.stellar_parameters[self.stellar_parameters['binarity'] == 1]
fig, ax = plt.subplots(2, 4, figsize=(30, 18))
plt.subplots_adjust(wspace=0.3, hspace=0.3)
fontsize = 26
ax[0, 0].set_xlabel(r'T$_{{\mathrm{{eff}}}} \, \, [K] $ (A)',
fontsize=fontsize)
ax[0, 0].hist(retrieved_binaries['teff_A'], density=False,
color='grey', alpha=0.5, bins=25, label='Recovered binaries')
ax[0, 0].hist(non_retrievedBinaries['teff_A'],
density=False, histtype='step',
color='black', bins=25, label='Non-recovered binaries')
ax[0, 0].hist(all_Binaries['teff_A'], density=False,
histtype='step', color='blue',
bins=25, label='Whole binary sample')
ax[1, 0].set_xlabel(r'T$_{{\mathrm{{eff}}}} \, \, [K] $ (B)',
fontsize=fontsize)
ax[1, 0].hist(retrieved_binaries['teff_B'], density=False,
color='grey', alpha=0.5, bins=25)
ax[1, 0].hist(non_retrievedBinaries['teff_B'], density=False,
histtype='step', color='black', bins=25)
ax[1, 0].hist(all_Binaries['teff_B'], density=False,
histtype='step', color='blue', bins=25)
ax[0, 1].set_xlabel(r'[Fe / H] [dex] (A)', fontsize=fontsize)
ax[0, 1].hist(retrieved_binaries['feh_A'], density=False,
color='grey', alpha=0.5, bins=25)
ax[0, 1].hist(non_retrievedBinaries['feh_A'], density=False,
histtype='step', color='black', bins=25)
ax[0, 1].hist(all_Binaries['feh_A'], density=False,
histtype='step', color='blue', bins=25)
ax[1, 1].set_xlabel('[Fe / H] [dex](B)', fontsize=fontsize)
ax[1, 1].hist(retrieved_binaries['feh_B'], density=False,
color='grey', alpha=0.5, bins=25)
ax[1, 1].hist(non_retrievedBinaries['feh_B'], density=False,
histtype='step', color='black', bins=25)
ax[1, 1].hist(all_Binaries['feh_B'], density=False,
histtype='step', color='blue', bins=25)
ax[0, 2].set_xlabel('$log \, g \, \, [dex]$ (A)', fontsize=fontsize)
ax[0, 2].hist(retrieved_binaries['logg_A'], density=False,
color='grey', alpha=0.5, bins=25)
ax[0, 2].hist(non_retrievedBinaries['logg_A'], density=False,
histtype='step', color='black', bins=25)
ax[0, 2].hist(all_Binaries['logg_A'], density=False,
histtype='step', color='blue', bins=25)
ax[1, 2].set_xlabel(r'$log \, g \, \, [dex]$ (B)', fontsize=fontsize)
ax[1, 2].hist(retrieved_binaries['logg_B'], density=False,
color='grey', alpha=0.5, bins=25)
ax[1, 2].hist(non_retrievedBinaries['logg_B'], density=False,
histtype='step', color='black', bins=25)
ax[1, 2].hist(all_Binaries['logg_B'], density=False,
histtype='step', color='blue', bins=25)
ax[0, 3].set_xlabel(r'$L_{B} \, / \, L_{A}$', fontsize=fontsize)
ax[0, 3].hist(retrieved_binaries['lum ratio'], density=False,
color='grey', alpha=0.5, bins=25)
ax[0, 3].hist(non_retrievedBinaries['lum ratio'], density=False,
histtype='step', color='black', bins=25)
ax[0, 3].hist(all_Binaries['lum ratio'], density=False,
histtype='step', color='blue', bins=25)
ax[1, 3].set_xlabel(r'$|\Delta v _{rad}| \, \, [km/s] $', fontsize=fontsize)
ax[1, 3].hist(np.abs(retrieved_binaries['rad_vel']),
color='grey', alpha=0.5, bins=25)
ax[1, 3].hist(np.abs(non_retrievedBinaries['rad_vel']),
density=False, histtype='step', color='black', bins=25)
ax[1, 3].hist(np.abs(all_Binaries['rad_vel']), density=False,
histtype='step', color='blue', bins=25)
handles, labels = ax[0, 0].get_legend_handles_labels()
ax[1, 2].legend(handles, labels, edgecolor='inherit',
fontsize=20, loc='upper left')
# plt.subplots_adjust(bottom=0.1)
matplotlib.rcParams.update({'font.size': fontsize})
niceplot(fig, labelsize = fontsize, tight_layout=True)
matplotlib.rcParams.update({'font.size': 26 })
if self.save_plots == True:
# plt.savefig(self.save_plots_dir + ('DBSCAN_histograms'+
# '_range_{}_perplexity_{}_SNRof{}_iterations_{}_ratio_{}.png').format(self.spectral_ranges,
# self.perplexity, self.SNR, self.iterations, self.ratio), dpi=300)
plt.savefig(('DBSCAN_histograms'+
'_range_{}_perplexity_{}_SNRof{}_iterations_{}_ratio_{}.png').format(self.spectral_ranges,
self.perplexity, self.SNR, self.iterations, self.ratio), dpi=300)