-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
123 lines (101 loc) · 4.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import matplotlib.pyplot as plt
import scaling_relations
import pandas as pd
#%matplotlib qt
import pandas as pd
import galah
import matplotlib
from dbscan_ratio import niceplot
matplotlib.rcParams.update({'font.size': 20})
pop = pd.read_csv(('data/BinaryPopulation_5000_classicrelations' +
'_allStarsDifferent_DucheneKraus13_q_IMF_exponential0,3-----FINALPOPULATION.csv'))
fig, ax = plt.subplots(1, 4, figsize=[24, 10], tight_layout=False)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
# plt.suptitle(r'Binary Population from Eggleton', y=0.94)
ax[0].hist(pop['teff_A'], bins=20, color='grey', alpha=0.5,
label=r'$T_{\mathrm{eff}, A}$', histtype='stepfilled')
ax[0].hist(pop['teff_B'], bins=20, color='k', alpha=0.75,
label=r'$T_{\mathrm{eff}, B}$', histtype='step')
ax[0].set_xlabel(r'T$_{\mathrm{eff}} \, [K]$')
ax[0].set_xticks([5000, 6000, 7000])
ax[0].legend()
ax[1].hist(pop['logg_A'], bins=20, color='grey',alpha=0.5,
label=r'$log \, g_{A}$', histtype='stepfilled')
ax[1].hist(pop['logg_B'], bins=20, color='k', alpha=0.75,
label=r'$log \, g_{B}$', histtype='step')
ax[1].set_xlabel(r'$log \, g$')
ax[1].legend(loc='upper left')
ax[2].hist(pop['mass_A'], bins=20, color='grey', alpha=0.5,
label=r'$M_{A}$', histtype='stepfilled')
ax[2].hist(pop['mass_B'], bins=20, color='k', alpha=0.75,
label=r'$M_{A}$', histtype='step')
ax[2].set_xlabel(r'$M/M_{\odot}$')
ax[2].legend()
ax[3].hist(pop['mass ratio'], bins=20, color='grey', alpha=0.5,
label=r'$q$', histtype='stepfilled')
ax[3].hist(pop['lum ratio'], bins=20, color='k', alpha=0.75,
label=r'$L_{B} / L_{A}$', histtype='step')
ax[3].set_xlabel(r'$L_{B}/L_{A}$ and $q$')
ax[3].legend(loc='upper left')
plt.savefig('distributions_binarypop.png', dpi=150)
# fig = plt.figure(figsize=[10, 8], tight_layout=True)
# ax_hist = fig.add_subplot(111, label='hist')
# ax_line = fig.add_subplot(111, label='line', frame_on=False)
#
# ax_hist.hist(pop['feh_A'], histtype='stepfilled',
# bins=20, color='grey', alpha=0.5, label=r'[Fe/H]$_{A}$')
# ax_hist.hist(pop['feh_B'], histtype='step',
# bins=20, color='k', label=r'[Fe/H]$_{B}$')
# ax_hist.set_xlabel('[Fe/H]')
# ax_hist.set_yticklabels([])
# ax_hist.legend(loc='upper left')
#
# ax_line.scatter(pop['feh_A'], pop['feh_B'], s=2, c='orange', alpha=0.35)
# ax_line.set_xlabel(r'[Fe/H]$_{A}$')
# ax_line.set_ylabel(r'[Fe/H]$_{B}$')
# ax_line.xaxis.tick_top()
# ax_line.yaxis.tick_right()
# ax_line.xaxis.set_label_position('top')
# ax_line.yaxis.set_label_position('right')
# plt.savefig('metallicity_binarypopulation.png', dpi=150)
# galah_data = galah.GALAH_survey()
# galah_data.get_stars_run()
# stars_run = galah_data.stars_run
#
# plt.hist(stars_run['teff'], bins=100, alpha=0.5)
# plt.hist(pop['teff_B'], bins=100, alpha=0.8)
#
# plt.figure(figsize=[15,15])
# plt.hist(v_rad_difference, bins=100, color='orange', alpha=0.75)
# plt.xlabel(r"$\Delta v_{rad} \, [km/s]$")
# plt.savefig(dirs.data + 'histogram_radvel.png', dpi=350)
from sklearn.cluster import DBSCAN
import directories
import dbscan_ratio
dirs = directories.directories()
PERPLEXITY = 30
SNR = 100
SELECTED_RANGES =[(550.0, 575.0)]
tsne_data = np.load(('/Users/pablonavarrobarrachina/Desktop/Results FFTW/' +
'tSNE_results_range_{}_perplexity_{}_SNRof{}.npy').format(SELECTED_RANGES,
PERPLEXITY, SNR))
tsne_x = tsne_data[:,0]
tsne_y = tsne_data[:,1]
stellar_parameters = pd.read_csv(dirs.data +
'stellar_parameters_duchenekrauspopulation.csv')
normalized_tsne_x = (2 * (tsne_x - np.min(tsne_x)) /
(np.max(tsne_x) - np.min(tsne_x)) - 1) * 10
normalized_tsne_y = (2 * (tsne_y - np.min(tsne_y)) /
(np.max(tsne_y) - np.min(tsne_y)) - 1) * 10
tSNEData_ = pd.DataFrame({'x': normalized_tsne_x, 'y': normalized_tsne_y})
naive_dbscan_labels = DBSCAN(eps=0.244444, min_samples=102.777778).fit(tSNEData_).labels_
dbscan = dbscan_ratio.dbscan_method(tsne_data[:, 0], tsne_data[:, 1],
stellar_parameters['binarity'],
stellar_parameters, SELECTED_RANGES,
SNR, PERPLEXITY)
ratiolabels = dbscan.find_binaries_ratio_dbscan(naive_dbscan_labels)
plt.figure(figsize = [20,20])
plt.scatter(normalized_tsne_x, normalized_tsne_y, s=1, alpha=0.45, c=ratiolabels)
plt.figure(figsize = [20,20])
plt.scatter(normalized_tsne_x, normalized_tsne_y, s=1, alpha=0.45, c=stellar_parameters['binarity'])