-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbenchmark_wino.cpp
54 lines (46 loc) · 1.56 KB
/
benchmark_wino.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include "miopen.hpp"
#include "tensor.hpp"
#include "utils.hpp"
#include "layers.hpp"
#include "multi_layers.hpp"
#include <cstdlib>
std::map<std::string, ConvLayerDesc> get_layers(){
std::map<std::string, ConvLayerDesc> m;
// batch_size, w, h, channels_in, channels_out, kernel_size, padding, stride
m.emplace("L2", ConvLayerDesc({128, 64, 64, 64, 128, 9, 0, 1}));
m.emplace("W1", ConvLayerDesc({128, 64, 64, 64, 128, 3, 1, 1}));
return m;
}
std::map<std::string, ConvLayerDesc>& layers() {
static std::map<std::string, ConvLayerDesc> m = get_layers();
return m;
}
int main(int argc, char *argv[])
{
device_init();
CHECK_MIO(miopenEnableProfiling(mio::handle(), true));
std::string layer_name = "W1";
if (argc >= 2) {
layer_name = argv[1];
if (layers().count(layer_name) == 0) {
FATAL("Unknown layer name `" << layer_name << "`.");
}
}
int reps = 1000;
if (argc >= 3) {
reps = atoi(argv[2]);
if (reps <= 0) {
FATAL("Bad iteration count: `" << std::string(argv[2]) << "`. Has to be int and > 0");
}
}
// create model of single layer
ConvLayerDesc l = get_layers()[layer_name];
TensorDesc input_dim(l.batch_size, l.channels_in, l.height, l.width);
Model m(input_dim);
m.emplace<ConvLayer>(l.channels_out, l.kernel_size, l.padding, l.stride);
m.input.uniform(); // randomly initialize input
// benchmark model forward
BenchmarkLogger::new_session(layer_name);
BenchmarkLogger::fwd_layer_benchmark(m, reps);
return 0;
}