-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmulti_layers.hpp
333 lines (281 loc) · 10.2 KB
/
multi_layers.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#ifndef MULTI_LAYERS_HPP
#define MULTI_LAYERS_HPP
#include <hip/hip_runtime.h>
#include "tensor.hpp"
#include "function.hpp"
#include "utils.hpp"
#include <vector>
#include <memory>
struct Sequential : public Function {
std::string name;
TensorDesc input_desc;
std::vector<std::shared_ptr<Function>> layers;
std::vector<std::shared_ptr<Tensor>> out_tensors; // the inner buffers
Sequential(const TensorDesc& input_dim, const std::string& name) : name(name), input_desc(input_dim) {}
Sequential(const TensorDesc& input_dim) : Sequential(input_dim, "Sequential") {}
Sequential(const Sequential&) = default;
Sequential(Sequential&&) = default;
virtual std::ostream& write_name(std::ostream& os) const {
return os << name;
}
std::string get_name() const {
return this->name;
}
const TensorDesc& last_output_dim() const {
if (layers.empty()) {
return input_desc;
} else {
return layers.back()->getOutputDesc();
}
}
virtual const TensorDesc& getInputDesc() const override {
return input_desc;
}
virtual const TensorDesc& getOutputDesc() const override {
return last_output_dim();
}
// Calls the LayerType constructor with the input dimension as first argument
// and then the given arguments LayerType(input_dim, args...);
template <typename LayerType, typename... Args>
void emplace(Args... args) {
if (!layers.empty()) {
out_tensors.emplace_back(new Tensor(layers.back()->getOutputDesc()));
}
layers.emplace_back(new LayerType(last_output_dim(), args...));
}
template <typename LayerType>
void add(const LayerType& l) {
if (!layers.empty()) {
out_tensors.emplace_back(new Tensor(layers.back()->getOutputDesc()));
}
layers.emplace_back(new LayerType(l));
}
template <typename LayerType>
void add(LayerType&& l) {
if (!layers.empty()) {
out_tensors.emplace_back(new Tensor(layers.back()->getOutputDesc()));
}
layers.emplace_back(new typename std::remove_reference<LayerType>::type(std::move(l)));
}
void addConv(int output_channels, int kernel_size, int padding, int stride) {
emplace<ConvLayer>(output_channels, kernel_size, padding, stride);
}
void addReLU() {
emplace<ReLU>();
}
void addMaxPool(int kernel_size, int padding, int stride) {
emplace<MaxPool>(kernel_size, padding, stride);
}
void addLinear(int outsize) {
emplace<Linear>(outsize);
}
void reshape(int n, int c, int h, int w) {
emplace<Reshape>(n,c,h,w);
//out_tensors.emplace_back(new Tensor(n, c, h, w, false)); /* Tensor data gets set in forward() */
}
// for each layer, calls f(Layer& l, Tensor& in, Tensor& out);
template <typename Func>
void forward_pass(const Tensor& input, Tensor& output, Func f) {
assert(layers.size() > 0);
const Tensor* in = &input;
Tensor* out;
for (size_t i = 0; i < layers.size(); ++i) {
if (i < layers.size()-1) {
out = out_tensors[i].get();
} else {
out = &output;
}
f(*layers[i], *in, *out);
in = out;
}
}
// for each layer backwards, calls b(Layer& l, Tensor& dout, Tensor& din)
template <typename Func>
void backward_pass(const Tensor& doutput, Tensor& dinput, Func b) {
assert(layers.size() > 0);
const Tensor* dout = &doutput;
Tensor* din;
for (size_t i = 0; i < layers.size(); ++i) {
if (i < layers.size()-1) {
din = out_tensors[layers.size()-i-2].get();
} else {
din = &dinput;
}
b(*layers[layers.size()-i-1], *dout, *din);
dout = din;
}
}
// initializes all layers for fwd
virtual void init_forward(const Tensor& in, Tensor& out) override {
forward_pass(in, out, [](Function& l, const Tensor& i, Tensor& o){
l.init_forward(i, o);
});
}
virtual void forward(const Tensor& in, Tensor& out) override {
forward_pass(in, out, [](Function& l, const Tensor& i, Tensor& o){
BenchmarkLogger::instance().tic();
l.forward(i, o);
BenchmarkLogger::instance().toc(l, false);
});
}
virtual void init_backward(const Tensor& dout, Tensor& din) override {
backward_pass(dout, din, [](Function& l, const Tensor& o, Tensor& i){
l.init_backward(o, i);
});
}
virtual void backward(const Tensor& dout, Tensor& din) override {
backward_pass(dout, din, [](Function& l, const Tensor& o, Tensor& i) {
BenchmarkLogger::instance().tic();
l.backward(o, i);
BenchmarkLogger::instance().toc(l, true);
});
}
};
struct Model : public Sequential {
Tensor input;
Tensor output;
bool is_init_fwd;
bool is_init_bwd;
Model(const TensorDesc& input_dim, const std::string& name) : Sequential(input_dim, name), input(input_dim), is_init_fwd(false), is_init_bwd(false) {}
Model(const TensorDesc& input_dim) : Model(input_dim, "Model") {}
Model(const Model&) = default;
Model(Model&&) = default;
using Sequential::init_forward;
using Sequential::init_backward;
using Sequential::forward;
using Sequential::backward;
void init_forward() {
if (output.data_size == 0)
output = Tensor(this->getOutputDesc());
this->init_forward(input, output);
is_init_fwd = true;
}
void forward() {
if (!is_init_fwd) {
init_forward();
}
this->forward(input, output);
}
void init_backward() {
if (!is_init_fwd) {
init_forward();
}
this->init_backward(output, input);
is_init_bwd = true;
}
void backward() {
if (!is_init_bwd) {
init_backward();
}
this->backward(output, input);
}
};
// implements x += y
/*
void add_inplace(Tensor& x, const Tensor& y) {
float alpha1 = 1.f, alpha2 = 1.f, beta = 0.f;
miopenOpTensor(mio::handle(), miopenTensorOpAdd, &alpha1, x.desc, x.data, &alpha2, y.desc, y.data, &beta, x.desc, x.data);
}
*/
__global__ void addinplace_kernel(hipLaunchParm lp, float* x, const float* y, size_t N) {
size_t offset = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;
size_t stride = hipBlockDim_x * hipGridDim_x;
for (size_t i = offset; i < N; i+= stride) {
x[i] = x[i] + y[i];
}
}
void add_inplace(Tensor& x, const Tensor& y) {
unsigned int blocks = 512;
unsigned int threadsPerBlock = 256;
assert(x.data_size == y.data_size);
hipLaunchKernel(addinplace_kernel, dim3(blocks), dim3(threadsPerBlock), 0, 0, (float*)x.data, (float*)y.data, x.data_size/4);
}
struct ShortCutAdd : public Function {
// Implements Residual Shortcutting: y = F(x) + x
// where F(x) is any Function with matching input and output dimensions
// Forward and backward are symmetric in this specific case when addition
// is used as the combination:
// forward(in,out):
// out = F.fwd(in) + in (elementwise add)
// backward(dout, din):
// din = F.bwd(dout) + dout
TensorDesc input_desc;
std::shared_ptr<Function> F;
// optional function for second path
std::shared_ptr<Function> G;
// buffers for G outputs
Tensor gout;
Tensor gdin;
ShortCutAdd(const TensorDesc& input_dim) : input_desc(input_dim) {
}
ShortCutAdd(const ShortCutAdd&) = default;
ShortCutAdd(ShortCutAdd&&) = default;
virtual std::ostream& write_name(std::ostream& os) const {
return os << "ShortCut";
}
template <typename Func>
void setF(Func f) {
F = std::shared_ptr<Function>(new typename std::remove_reference<Func>::type(std::forward<Func>(f)));
}
template <typename Func>
void setG(Func g) {
G = std::shared_ptr<Function>(new typename std::remove_reference<Func>::type(std::forward<Func>(g)));
gout = Tensor(G->getOutputDesc());
gdin = Tensor(input_desc);
}
virtual const TensorDesc& getInputDesc() const override {
return F->getOutputDesc();
}
virtual const TensorDesc& getOutputDesc() const override {
assert(F.get() != nullptr);
return F->getOutputDesc();
}
virtual void forward(const Tensor& in, Tensor& out) override {
assert(F.get() != nullptr);
BenchmarkLogger::instance().tic();
F->forward(in, out);
BenchmarkLogger::instance().toc("ShortcutF", false);
if (G.get() != nullptr) {
BenchmarkLogger::instance().tic();
G->forward(in, gout);
BenchmarkLogger::instance().toc("ShortcutG", false);
BenchmarkLogger::instance().tic();
add_inplace(out, gout);
BenchmarkLogger::instance().toc("AddInplace", false);
} else {
BenchmarkLogger::instance().tic();
add_inplace(out, in);
BenchmarkLogger::instance().toc("AddInplace", false);
}
}
virtual void init_forward(const Tensor& in, Tensor& out) {
F->init_forward(in, out);
if (G.get() != nullptr) {
G->init_forward(in, gout);
}
}
virtual void backward(const Tensor& dout, Tensor& din) override {
BenchmarkLogger::instance().tic();
F->backward(dout, din);
BenchmarkLogger::instance().toc("ShortcutF", true);
if (G.get() != nullptr) {
BenchmarkLogger::instance().tic();
G->backward(dout, gdin);
BenchmarkLogger::instance().toc("ShortcutG", true);
BenchmarkLogger::instance().tic();
add_inplace(din, gdin);
BenchmarkLogger::instance().toc("AddInplace", true);
} else {
BenchmarkLogger::instance().tic();
add_inplace(din, dout);
BenchmarkLogger::instance().toc("AddInplace", true);
}
}
virtual void init_backward(const Tensor& dout, Tensor& din) override {
F->init_backward(dout, din);
if (G.get() != nullptr) {
G->init_backward(dout, gdin);
}
}
};
#endif // MULTI_LAYERS_HPP