-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmap2110-l5.tex
93 lines (75 loc) · 1.88 KB
/
map2110-l5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
\documentclass[12pt]{article}
\usepackage{amsfonts, amsmath, amssymb}
\usepackage[brazil]{babel}
\usepackage{graphicx}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{siunitx}
\parindent=0pt
\addtolength{\textheight}{3.5cm}
\addtolength{\oddsidemargin}{-1cm}
\addtolength{\evensidemargin}{-1cm}
\addtolength{\textwidth}{2cm}
\addtolength{\topmargin}{-2.0cm}
\newcounter{questao}
\newcommand{\quest}{\stepcounter{questao}{\bf \arabic{questao}.\ }}
\begin{document}
\hrule
{ \sf Lista 5 - Determinantes e autovalores \hfill \fbox{L5-2020}}
\hrule
\vspace{0.5cm}
\thispagestyle{empty}
\fontsize{14}{16}\selectfont
\quest Achar a matriz de cofatores de
$$ A = \begin{pmatrix}
-1 & 2 & 2 \\
2& -1 & 2 \\
2 & 2 & -1
\end{pmatrix} $$
\vspace{0.3cm}
\quest Sejam
$$ A = \begin{bmatrix}
a & b & c \\
p & q & r \\
u & v & w
\end{bmatrix}\text{ }B= \begin{bmatrix}
4u & 2p & -a \\
4v & 2q & -b \\
4w & 2r & -c
\end{bmatrix}\text{ e }C=\begin{bmatrix}
2p & u-a & 3u \\
2q & v-b & 3v \\
2r & w-c & 3w \\
\end{bmatrix}
$$
Se $\det(A)=3$ achar o $\det(2B^{-1})$ e $\det(2C^{-1})$
\vspace{0.3cm}
\quest Ache o $\det(xI-C)$ onde
$$ C= \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-a& -b& -c&-d
\end{bmatrix}$$
\vspace{0.3cm}
\quest Dada a matriz
$$ A= \begin{bmatrix}
2 & -4 \\ -1 & -1
\end{bmatrix}$$
ache os autovalores, autovetores, o polinômio característico
e uma matriz $P$ tal que $P^{-1}AP$ seja uma matriz diagonal.
\vspace{0.3cm}
\quest Temos:
$$ A=\begin{bmatrix}
2 & 1 \\ 4 & -1
\end{bmatrix} \text{ e } \mathbf{v}_0=\begin{bmatrix}
1 \\ 2
\end{bmatrix}$$
A sequência de vetores $\mathbf{v}_k$ satisfaz a regra:
$$ \mathbf{v_{k+1}} = A\mathbf{v}_k $$
Expresse $\mathbf{v}_k$ como combinação linear dos autovetores de $A$
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: