To run this example, an instance of Triton Inference Server and a sample dataset is required. The following steps will outline how to build and run Triton with the provided FIL model.
docker pull nvcr.io/nvidia/tritonserver:23.06-py3
From the root of the Morpheus repo, run the following to launch Triton and load the abp-pcap-xgb
model:
docker run --rm --gpus=all -p 8000:8000 -p 8001:8001 -p 8002:8002 -v $PWD/examples/abp_pcap_detection/abp-pcap-xgb:/models/abp-pcap-xgb --name tritonserver nvcr.io/nvidia/tritonserver:23.06-py3 tritonserver --model-repository=/models --exit-on-error=false
Once Triton server finishes starting up, it will display the status of all loaded models. Successful deployment of the model will show the following:
+-----------------------------+---------+--------+
| Model | Version | Status |
+-----------------------------+---------+--------+
| abp-pcap-xgb | 1 | READY |
+-----------------------------+---------+--------+
Use Morpheus to run the Anomalous Behavior Profiling Detection Pipeline with the pcap data. A pipeline has been configured in run.py
with several command line options:
From the root of the Morpheus repo, run:
python examples/abp_pcap_detection/run.py --help
Output:
Usage: run.py [OPTIONS]
Options:
--num_threads INTEGER RANGE Number of internal pipeline threads to use.
[x>=1]
--pipeline_batch_size INTEGER RANGE
Internal batch size for the pipeline. Can be
much larger than the model batch size. Also
used for Kafka consumers. [x>=1]
--model_max_batch_size INTEGER RANGE
Max batch size to use for the model. [x>=1]
--input_file PATH Input filepath. [required]
--output_file TEXT The path to the file where the inference
output will be saved.
--model_fea_length INTEGER RANGE
Features length to use for the model.
[x>=1]
--model_name TEXT The name of the model that is deployed on
Tritonserver.
--iterative Iterative mode will emit dataframes one at a
time. Otherwise a list of dataframes is
emitted. Iterative mode is good for
interleaving source stages.
--server_url TEXT Tritonserver url. [required]
--file_type [auto|csv|json] Indicates what type of file to read.
Specifying 'auto' will determine the file
type from the extension.
--help Show this message and exit.
To launch the configured Morpheus pipeline with the sample data that is provided in examples/data
, run the following:
python examples/abp_pcap_detection/run.py
Note: Both Morpheus and Triton Inference Server containers must have access to the same GPUs in order for this example to work.
The pipeline will process the input abp_pcap_dump.jsonlines
sample data and write it to pcap_out.jsonlines
.
The above example is illustrative of using the Python API to build a custom Morpheus Pipeline.
Alternately, the Morpheus command line could have been used to accomplish the same goal by registering the abp_pcap_preprocessing.py
module as a plugin.
From the root of the Morpheus repo, run:
morpheus --log_level INFO --plugin "examples/abp_pcap_detection/abp_pcap_preprocessing.py" \
run --use_cpp False --pipeline_batch_size 100000 --model_max_batch_size 100000 \
pipeline-fil --model_fea_length 13 --label=probs \
from-file --filename examples/data/abp_pcap_dump.jsonlines --filter_null False \
deserialize \
pcap-preprocess \
monitor --description "Preprocessing rate" \
inf-triton --model_name "abp-pcap-xgb" --server_url "localhost:8001" --force_convert_inputs=True \
monitor --description "Inference rate" --unit inf \
add-class --label=probs \
monitor --description "Add classification rate" --unit "add-class" \
serialize \
monitor --description "Serialize rate" --unit ser \
to-file --filename "pcap_out.jsonlines" --overwrite \
monitor --description "Write to file rate" --unit "to-file"