-
Notifications
You must be signed in to change notification settings - Fork 220
/
Copy pathtidystats_lmm.Rmd
448 lines (301 loc) · 10.9 KB
/
tidystats_lmm.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# 多层线性模型 {#tidystats-lmm}
```{r, include=FALSE}
knitr::opts_chunk$set(
echo = TRUE,
warning = FALSE,
message = FALSE,
fig.showtext = TRUE
)
```
## 分组数据
在实验设计和数据分析中,我们可能经常会遇到分组的数据结构。所谓的分组,就是每一次观察,属于某个特定的组,比如考察学生的成绩,这些学生属于某个班级,班级又属于某个学校。有时候发现这种分组的数据,会给数据分析带来很多有意思的内容。
## 案例
我们从一个有意思的案例开始。
> 不同院系教职员工的收入
一般情况下,不同的院系,制定教师收入的依据和标准可能是不同的。我们假定有一份大学教职员的收入清单,这个学校包括信息学院、外国语学院、社会政治学、生物学院、统计学院共五个机构,我们通过数据建模,探索这个学校的**薪酬制定规则**。
```{r lmm-1}
create_data <- function() {
df <- tibble(
ids = 1:100,
department = rep(c("sociology", "biology", "english", "informatics", "statistics"), 20),
bases = rep(c(40000, 50000, 60000, 70000, 80000), 20) * runif(100, .9, 1.1),
experience = floor(runif(100, 0, 10)),
raises = rep(c(2000, 500, 500, 1700, 500), 20) * runif(100, .9, 1.1)
)
df <- df %>% mutate(
salary = bases + experience * raises
)
df
}
```
```{r lmm-2}
library(tidyverse)
library(lme4)
library(modelr)
library(broom)
library(broom.mixed)
df <- create_data()
df
```
## 线性模型
**薪酬制定规则一**:假定教师收入主要取决于他从事工作的时间,也就说说工作时间越长收入越高。意味着,每个院系的起始薪酬(起薪)是一样的,并有相同的年度增长率。那么,这个收入问题就是一个简单线性模型:
$$\hat{y} = \alpha + \beta_1x_1 + ... + \beta_nx_n$$
具体到我们的案例中,薪酬模型可以写为
$$
\hat{salary_i} = \alpha + \beta * experience_i
$$
通过这个等式,可以计算出各个系数,即截距$\alpha$就是起薪,斜率$\beta$就是年度增长率。确定了斜率和截距,也就确定了每个教职员工的收入曲线。
```{r lmm-3}
# Model without respect to grouping
m1 <- lm(salary ~ experience, data = df)
m1
```
```{r lmm-4}
broom::tidy(m1)
```
```{r lmm-5}
df %>% modelr::add_predictions(m1)
```
```{r lmm-6}
# Model without respect to grouping
df %>%
add_predictions(m1) %>%
ggplot(aes(x = experience, y = salary)) +
geom_point() +
geom_line(aes(x = experience, y = pred)) +
labs(x = "Experience", y = "Predicted Salary") +
ggtitle("linear model Salary Prediction") +
scale_colour_discrete("Department")
```
> 注意到,对每个教师来说,不管来自哪个学院的,系数$\alpha$和$\beta$是一样的,是**固定**的,因此这种简单线性模型也称之为**固定效应**模型。
事实上,这种线性模型的方法太过于粗狂,构建的线性直线不能反映**收入随院系的变化**。
## 变化的截距
**薪酬制定规则二**,假定不同的院系起薪不同,但年度增长率是相同的。
这种统计模型,相比于之前的固定效应模型(简单线性模型)而言,加入了**截距会随所在学院不同而变化**的思想,统计模型写为
$$\hat{y_i} = \alpha_{j[i]} + \beta x_i$$
这个等式中,斜率$\beta$代表着年度增长率,是一个固定值,也就前面说的固定效应项,而截距$\alpha$代表着起薪,随学院变化,是五个值,因为一个学院对应一个,称之为**变化效应项**(也叫随机效应项)。这里模型中既有固定效应项又有变化效应项,因此称之为**混合效应模型**。
> 教师$i$,他所在的学院$j$,记为$j[i]$,那么教师$i$所在学院$j$对应的$\alpha$,很自然的记为$\alpha_{j[i]}$
```{r lmm-7}
# Model with varying intercept
m2 <- lmer(salary ~ experience + (1 | department), data = df)
m2
```
```{r lmm-8}
broom.mixed::tidy(m2, effects = "fixed")
broom.mixed::tidy(m2, effects = "ran_vals")
```
```{r lmm-9}
df %>%
add_predictions(m2) %>%
ggplot(aes(
x = experience, y = salary, group = department,
colour = department
)) +
geom_point() +
geom_line(aes(x = experience, y = pred)) +
labs(x = "Experience", y = "Predicted Salary") +
ggtitle("Varying Intercept Salary Prediction") +
scale_colour_discrete("Department")
```
这种模型,我们就能看到院系不同 带来的员工收入的差别。
## 变化的斜率
**薪酬制定规则三**,不同的院系起始薪酬是相同的,但年度增长率不同。
与薪酬模型规则二的统计模型比较,我们只需要把**变化的截距**变成**变化的斜率**,那么统计模型可写为
$$\hat{y_i} = \alpha + \beta_{j[i]}x_i$$
这里,截距($\alpha$)对所有教师而言是固定不变的,而斜率($\beta$)会随学院不同而变化,5个学院对应着5个斜率。
```{r lmm-10}
# Model with varying slope
m3 <- lmer(salary ~ experience + (0 + experience | department), data = df)
m3
```
```{r lmm-11}
broom.mixed::tidy(m3, effects = "fixed")
broom.mixed::tidy(m3, effects = "ran_vals")
```
```{r lmm-12}
df %>%
add_predictions(m3) %>%
ggplot(aes(
x = experience, y = salary, group = department,
colour = department
)) +
geom_point() +
geom_line(aes(x = experience, y = pred)) +
labs(x = "Experience", y = "Predicted Salary") +
ggtitle("Varying slope Salary Prediction") +
scale_colour_discrete("Department")
```
## 变化的斜率 + 变化的截距
**薪酬制定规则四**,不同的学院起始薪酬和年度增长率也不同。
这可能是最现实的一种情形了,它实际上是规则二和规则三的一种组合,要求截距和斜率都会随学院的不同变化,数学上记为
$$\hat{y_i} = \alpha_{j[i]} + \beta_{j[i]}x_i$$
具体来说,教师$i$,所在的学院$j$, 他的入职的起始收入表示为 ($\alpha_{j[i]}$),年度增长率表示为($\beta_{j[i]}$).
```{r lmm-13}
# Model with varying slope and intercept
m4 <- lmer(salary ~ experience + (1 + experience | department), data = df)
m4
```
```{r lmm-14}
broom.mixed::tidy(m4, effects = "fixed")
broom.mixed::tidy(m4, effects = "ran_vals")
```
```{r lmm-15}
df %>%
add_predictions(m4) %>%
ggplot(aes(
x = experience, y = salary, group = department,
colour = department
)) +
geom_point() +
geom_line(aes(x = experience, y = pred)) +
labs(x = "Experience", y = "Predicted Salary") +
ggtitle("Varying Intercept and Slopes Salary Prediction") +
scale_colour_discrete("Department")
```
## 信息池
### 提问
问题:**薪酬制定规则四**中,不同的院系起薪不同,年度增长率也不同,我们得出了5组不同的截距和斜率,那么是不是可以等价为,**先按照院系分5组,然后各算各的截距和斜率**? 比如
```{r lmm-16}
df %>%
group_by(department) %>%
group_modify(
~ broom::tidy(lm(salary ~ 1 + experience, data = .))
)
```
> 分组各自回归,与这里的(变化的截距+变化的斜率)模型,不是一回事。
### 信息共享
- 完全共享
```{r lmm-17}
broom::tidy(m1)
```
```{r lmm-18}
complete_pooling <-
broom::tidy(m1) %>%
dplyr::select(term, estimate) %>%
tidyr::pivot_wider(
names_from = term,
values_from = estimate
) %>%
dplyr::rename(Intercept = `(Intercept)`, slope = experience) %>%
dplyr::mutate(pooled = "complete_pool") %>%
dplyr::select(pooled, Intercept, slope)
complete_pooling
```
- 部分共享
```{r lmm-19, eval=FALSE}
fix_effect <- broom.mixed::tidy(m4, effects = "fixed")
fix_effect
fix_effect$estimate[1]
fix_effect$estimate[2]
```
```{r lmm-20, eval=FALSE}
var_effect <- broom.mixed::tidy(m4, effects = "ran_vals")
var_effect
```
```{r lmm-21, eval=FALSE}
# random effects plus fixed effect parameters
partial_pooling <- var_effect %>%
dplyr::select(level, term, estimate) %>%
tidyr::pivot_wider(
names_from = term,
values_from = estimate
) %>%
dplyr::rename(Intercept = `(Intercept)`, estimate = experience) %>%
dplyr::mutate(
Intercept = Intercept + fix_effect$estimate[1],
estimate = estimate + fix_effect$estimate[2]
) %>%
dplyr::mutate(pool = "partial_pool") %>%
dplyr::select(pool, level, Intercept, estimate)
partial_pooling
```
```{r lmm-22}
partial_pooling <-
coef(m4)$department %>%
tibble::rownames_to_column() %>%
dplyr::rename(level = rowname, Intercept = `(Intercept)`, slope = experience) %>%
dplyr::mutate(pooled = "partial_pool") %>%
dplyr::select(pooled, level, Intercept, slope)
partial_pooling
```
- 不共享
```{r lmm-23}
no_pool <- df %>%
dplyr::group_by(department) %>%
dplyr::group_modify(
~ broom::tidy(lm(salary ~ 1 + experience, data = .))
)
no_pool
```
```{r lmm-24}
un_pooling <- no_pool %>%
dplyr::select(department, term, estimate) %>%
tidyr::pivot_wider(
names_from = term,
values_from = estimate
) %>%
dplyr::rename(Intercept = `(Intercept)`, slope = experience) %>%
dplyr::mutate(pooled = "no_pool") %>%
dplyr::select(pooled, level = department, Intercept, slope)
un_pooling
```
### 可视化
```{r lmm-25}
library(ggrepel)
un_pooling %>%
dplyr::bind_rows(partial_pooling) %>%
ggplot(aes(x = Intercept, y = slope)) +
purrr::map(
c(seq(from = 0.1, to = 0.9, by = 0.1)),
.f = function(level) {
stat_ellipse(
geom = "polygon", type = "norm",
size = 0, alpha = 1 / 10, fill = "gray10",
level = level
)
}
) +
geom_point(aes(group = pooled, color = pooled)) +
geom_line(aes(group = level), size = 1 / 4) +
# geom_point(data = complete_pooling, size = 4, color = "red") +
geom_text_repel(
data = . %>% filter(pooled == "no_pool"),
aes(label = level)
) +
scale_color_manual(
name = "information pool",
values = c(
"no_pool" = "black",
"partial_pool" = "red" # ,
# "complete_pool" = "#A65141"
),
labels = c(
"no_pool" = "no share",
"partial_pool" = "partial share" # ,
# "complete_pool" = "complete share"
)
) #+
# theme_classic()
```
## 更多
- 解释模型的含义
```{r lmm-26, eval=FALSE}
lmer(salary ~ 1 + (0 + experience | department), data = df)
# vs
lmer(salary ~ 1 + experience + (0 + experience | department), data = df)
```
```{r lmm-27}
lmer(salary ~ 1 + (1 + experience | department), data = df)
# vs
lmer(salary ~ 1 + (1 | department) + (0 + experience | department), data = df)
```
- 课后阅读[文献](https://peerj.com/articles/4794/),读完后大家一起分享
- 课后阅读 [Understanding mixed effects models through data simulation](https://osf.io/3cz2e/),
```{r lmm-28, echo = F}
# remove the objects
# rm(list=ls())
rm(complete_pooling, create_data, df, m1, m2, m3, m4, no_pool, partial_pooling, un_pooling)
```
```{r lmm-29, echo = F, message = F, warning = F, results = "hide"}
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
```