-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathtrain.py
125 lines (99 loc) · 4.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from absl import app, flags, logging
from absl.flags import FLAGS
import os
import tensorflow as tf
from modules.models import RetinaFaceModel
from modules.lr_scheduler import MultiStepWarmUpLR
from modules.losses import MultiBoxLoss
from modules.anchor import prior_box
from modules.utils import (set_memory_growth, load_yaml, load_dataset,
ProgressBar)
flags.DEFINE_string('cfg_path', './configs/retinaface_res50.yaml',
'config file path')
flags.DEFINE_string('gpu', '0', 'which gpu to use')
def main(_):
# init
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
logger = tf.get_logger()
logger.disabled = True
logger.setLevel(logging.FATAL)
set_memory_growth()
cfg = load_yaml(FLAGS.cfg_path)
# define network
model = RetinaFaceModel(cfg, training=True)
model.summary(line_length=80)
# define prior box
priors = prior_box((cfg['input_size'], cfg['input_size']),
cfg['min_sizes'], cfg['steps'], cfg['clip'])
# load dataset
train_dataset = load_dataset(cfg, priors, shuffle=True)
# define optimizer
steps_per_epoch = cfg['dataset_len'] // cfg['batch_size']
learning_rate = MultiStepWarmUpLR(
initial_learning_rate=cfg['init_lr'],
lr_steps=[e * steps_per_epoch for e in cfg['lr_decay_epoch']],
lr_rate=cfg['lr_rate'],
warmup_steps=cfg['warmup_epoch'] * steps_per_epoch,
min_lr=cfg['min_lr'])
optimizer = tf.keras.optimizers.SGD(
learning_rate=learning_rate, momentum=0.9, nesterov=True)
# define losses function
multi_box_loss = MultiBoxLoss()
# load checkpoint
checkpoint_dir = './checkpoints/' + cfg['sub_name']
checkpoint = tf.train.Checkpoint(step=tf.Variable(0, name='step'),
optimizer=optimizer,
model=model)
manager = tf.train.CheckpointManager(checkpoint=checkpoint,
directory=checkpoint_dir,
max_to_keep=3)
if manager.latest_checkpoint:
checkpoint.restore(manager.latest_checkpoint)
print('[*] load ckpt from {} at step {}.'.format(
manager.latest_checkpoint, checkpoint.step.numpy()))
else:
print("[*] training from scratch.")
# define training step function
@tf.function
def train_step(inputs, labels):
with tf.GradientTape() as tape:
predictions = model(inputs, training=True)
losses = {}
losses['reg'] = tf.reduce_sum(model.losses)
losses['loc'], losses['landm'], losses['class'] = \
multi_box_loss(labels, predictions)
total_loss = tf.add_n([l for l in losses.values()])
grads = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
return total_loss, losses
# training loop
summary_writer = tf.summary.create_file_writer('./logs/' + cfg['sub_name'])
remain_steps = max(
steps_per_epoch * cfg['epoch'] - checkpoint.step.numpy(), 0)
prog_bar = ProgressBar(steps_per_epoch,
checkpoint.step.numpy() % steps_per_epoch)
for inputs, labels in train_dataset.take(remain_steps):
checkpoint.step.assign_add(1)
steps = checkpoint.step.numpy()
total_loss, losses = train_step(inputs, labels)
prog_bar.update("epoch={}/{}, loss={:.4f}, lr={:.1e}".format(
((steps - 1) // steps_per_epoch) + 1, cfg['epoch'],
total_loss.numpy(), optimizer.lr(steps).numpy()))
if steps % 10 == 0:
with summary_writer.as_default():
tf.summary.scalar(
'loss/total_loss', total_loss, step=steps)
for k, l in losses.items():
tf.summary.scalar('loss/{}'.format(k), l, step=steps)
tf.summary.scalar(
'learning_rate', optimizer.lr(steps), step=steps)
if steps % cfg['save_steps'] == 0:
manager.save()
print("\n[*] save ckpt file at {}".format(
manager.latest_checkpoint))
manager.save()
print("\n[*] training done! save ckpt file at {}".format(
manager.latest_checkpoint))
if __name__ == '__main__':
app.run(main)