-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfbsscan.py
759 lines (574 loc) · 33.7 KB
/
tfbsscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
#!/usr/bin/env python
"""
TFBSscan.py produces the data to be used to join the footprint and motif information across genome
@author: Anastasiia Petrova
@contact: anastasiia.petrova(at)mpi-bn.mpg.de
"""
import argparse
import sys
import os
import re
import time
import multiprocessing
import logging
import subprocess
from Bio import SeqIO
import Bio.SeqIO.FastaIO as bio
import textwrap
import MOODS.scan
import MOODS.tools
import MOODS.parsers
logger = logging.getLogger('tfbsscan')
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s : %(message)s", "%Y-%m-%d %H:%M")
fh = logging.FileHandler('tfbsscan.log')
fh.setLevel(logging.INFO)
fh.setFormatter(formatter)
logger.addHandler(fh)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch.setFormatter(formatter)
logger.addHandler(ch)
#catch all the information about input and output files as well as information on the used tool (fimo or moods)
def parse_args():
parser = argparse.ArgumentParser(prog = 'tfbsscan', description = textwrap.dedent('''
This script takes a list of motifs loaded from jaspar.genereg.net as a combined text file in MEME or .PFM format, a genome file in FASTA format and optionaly a .bed file (the one you want to be merged with the whole genome file) as input. If you want to merge a .bed file with the whole genome file, please enter --bed_file or -b bevor your .bed file. The tool will provide a file output_merge.fa, which you can also use for your research later on. If you already have a merged file, please give this one as genome file input. If there are several motifs in the input file, the tool will create a separate output file for each motif. Choose if you want to use fimo or moods with --use, this script uses by default fimo. Please note that the tool can not provide the calculation of q values with fimo due to the text mode that fimo needs to use. The tool sends merged genome file and motifs to fimo or moods, saves the sorted output for each of the given motifs as moods/fimo_output_[alternate name and id of the motif].txt in the output directory, then calculates the start and the end as real positions on the chromosom and writes this information in the ouput files. The columns in the output file are: chromosom, start, end, the name and score of TF. If a .bed file was given as input, the tool will also add the additional columns from it to the output. If the output file is empty, there were no machtes within given genome regions. Please note, if you want to have all intermediate output files, enter --clean nothing
'''), epilog='That is what you need to make this script work for you. Enjoy it')
required_arguments = parser.add_argument_group('required arguments')
required_arguments.add_argument('-m', '--motifs', help='file in MEME format with mofits loaded from jaspar.genereg.net')
required_arguments.add_argument('-g', '--genome', help='a whole genome file or regions of interest in FASTA format to be scanned with motifs')
#all other arguments are optional
parser.add_argument('-o', '--output_directory', default='output', const='output', nargs='?', help='output directory, default ./output/')
parser.add_argument('-b', '--bed_file', nargs='?', help='a .bed file to be merged with the whole genome file to find regions of interest')
parser.add_argument('--use', '--use_tool', default='fimo', const='fimo', nargs='?', choices=['fimo', 'moods'], help='choose the tool to work with, default tool is fimo')
parser.add_argument('--clean', nargs='*', choices=['nothing', 'all', 'cut_motifs', 'fimo_output', 'merge_output', 'moods_output'], dest='cleans', help='choose the files you want to delete from the output directory, the default is deleting all the temporary files from the directory')
parser.add_argument('--fimo', help='enter additional options for fimo using = inside "", for example fimo="--norc" to not score the reverse complement DNA strand. By default the --text mode is used and the calculation of the q values due to the --text mode is not possible')
parser.add_argument('--cores', type=int, help='number of cores allowed to use by this tool, by default the tool uses 2 cores', default=2)
parser.add_argument('-p', '--p_value', type=float, help='enter the p value, the default p value is 0.0001. Please note that if you enter the p value using --fimo="--thresh ..." as well, the one within --fimo call will be used', default=0.0001)
parser.add_argument('--resolve_overlaps', action='store_true', help='delete overlaps with greater p value, by default no overlaps are deleted')
parser.add_argument('--hide_info', action='store_true', help='while working with data write the information only into ./log.txt')
parser.add_argument('--moods_bg', nargs='+', type=float, help='set the bg for moods, by default moods uses the bg is 0.25 0.25 0.25 0.25')
args = parser.parse_args()
return args
def check_directory(directory):
if not os.path.exists(directory):
os.makedirs(directory)
logger.info('a new directory ' + directory + ' was created')
#merge the whole genome with the regions mentioned in .bed file
def merge(genome, bed_file, output_directory):
logger.info('the merging of files ' + genome + ' and ' + bed_file + ' will end soon, the result file is output_merge.fa')
output_merge = os.path.join(output_directory, "output_merge.fa")
os.system("bedtools getfasta -fi " + genome + " -bed " + bed_file + " -fo " + output_merge)
return output_merge
#split the motifs each in other file
def split_motifs(motifs, output_directory, usage):
logger.info("the file with motifs " + motifs + " will be checked for motifs and if needed splitted in files each containing only one motif")
first_line = subprocess.getoutput("head -1 " + motifs) #find the first line of the input file
if usage == "moods":
if first_line.startswith(">"):
#the motif file probably has the .pfm format, try to read and split it
splitted_motifs = read_pfm(motifs, output_directory)
else: #maybe the file with motifs is in MEME format, so try to convert it
logger.info("the input file has not the expected format, I will try to convert it to .pfm format")
splitted_motifs = convert_meme_to_pfm(motifs, output_directory)
elif usage == "fimo":
if first_line.startswith("MEME version"):
#the motifs file has probably the MEME format, try to read and split it
splitted_motifs = read_meme(motifs, output_directory)
#if the there was a convertion before, delete all the .pfm files as we don't need them
for filename in os.listdir(output_directory):
if filename.endswith(".pfm"):
remove_file(os.path.join(output_directory, filename))
else: #maybe the file with motifs is in .pfm format, so try to convert is
logger.info("the input file has not the expected format, I will try to convert it to MEME format")
splitted_motifs = convert_pfm_to_meme(motifs, output_directory)
return splitted_motifs
def read_pfm(motifs, output_directory):
splitted_motifs = [] #to save the names of files after splitting
motif = [] #to save the motif itself, which will be written to the file
with open(motifs) as read_file:
lines = 0
for line in read_file:
#as the motif has first line with the name and 4 lines with information, if the 5th line is something else than the name of the next motif, the exit will be forced
if lines == 5 and not line.startswith(">"):
logger.info('please make sure that the file with motifs has a right format and the number of lines is right in the motif file')
sys.exit()
else:
if line.startswith(">"):
if 'written_file' in locals():
written_file.write(''.join(motif))
motif = []
lines = 0
written_file.close()
motif_alternate_name = check_name(re.split(' ', line)[1].rstrip())
motif_id = re.split(' ', line[1:])[0] #[1:] meands do not use the first character
motif_name = os.path.join(output_directory, motif_alternate_name + '_' + motif_id + '.pfm')
splitted_motifs.append(motif_name)
written_file = open(motif_name, 'w')
if lines >= 1 and lines <= 4: #one motif has 5 lines, the first consists the name, the next 4 - the information we need to proceed the data within moods
motif.append(line)
lines = lines + 1
written_file.write(''.join(motif))
written_file.close()
return splitted_motifs
def read_meme(motifs, output_directory):
splitted_motifs = [] #to save the names of files after splitting
motif = [] #to save the motif itself, which will be written to the file
head = [] #define a list for header, as fimo needs a header in each motif file it proceedes
with open(motifs) as read_file:
lines = 0
for line in read_file:
#make the head part
if lines <= 8:
if lines == 0 and not line.startswith("MEME version"):
logger.info('please make sure that the file with motifs has a right format and the number of lines is right in the motif file')
sys.exit()
head.append(line)
else:
#search for motifs and save each to another file
if line.startswith("MOTIF"):
if 'written_file' in locals():
written_file.write(''.join(motif))
motif = []
written_file.close()
#the alternate name will be checked for validity and the invalid chars will be replaced with '_'
if len(re.split(' ', line.rstrip())) == 3: #in the input motif file the motif id and the alternate name are splitted using the tab, otherwise they are splitted using _, but we do not want to change it if so
motif_alternate_name = check_name(re.split(' ', line)[2].rstrip())
motif_id = re.split(' ', line)[1]
motif_name = os.path.join(output_directory, motif_alternate_name + '_' + motif_id + '.meme')
else:
motif_alternate_name = check_name(re.split(' ', line)[1].rstrip())
motif_name = os.path.join(output_directory, motif_alternate_name + '.meme')
#make a list with all the motif names to know which files to iterate when fimo is called
splitted_motifs.append(motif_name)
written_file = open(motif_name, 'w')
written_file.write(''.join(head))
motif.append(line)
lines = lines + 1
#write the last motif
written_file.write(''.join(motif))
written_file.close()
read_file.close()
return splitted_motifs
def convert_meme_to_pfm(motifs, output_directory):
#i can only convert the file to pfm if the motifs file is in MEME format
splitted_motifs = [] #to save the names of files after splitting
rows = [[] for row in range(4)]
with open(motifs) as read_file:
lines = 0
for line in read_file:
if lines == 0 and not line.startswith("MEME version"):
logger.info('please make sure that the file with motifs has a right format and the number of lines is right in the motif file')
sys.exit()
else:
#search for motifs and save each to another file
if line.startswith("MOTIF"):
if 'written_file' in locals():
for row in rows:
written_file.write('\t'.join(row) + '\n')
rows = [[] for row in range(4)]
written_file.close()
#the alternate name will be checked for validity and the invalid chars will be replaced with '_'
if len(re.split(' ', line.rstrip())) == 3: #in the input motif file the motif id and the alternate name are splitted using the tab, otherwise they are splitted using _, but we do not want to change it if so
motif_alternate_name = check_name(re.split(' ', line)[2].rstrip())
motif_id = re.split(' ', line)[1]
motif_name = os.path.join(output_directory, motif_alternate_name + '_' + motif_id + '.pfm')
else:
motif_alternate_name = check_name(re.split(' ', line)[1].rstrip())
motif_name = os.path.join(output_directory, motif_alternate_name + '.pfm')
#make a list with all the motif names to know which files to iterate when fimo is called
splitted_motifs.append(motif_name)
written_file = open(motif_name, 'w')
elif line.startswith("letter-probability matrix"):
columns = int(re.split(' ', re.split('w= ', line)[1])[0]) #find the number of columns from the line out of the motifs file
nsites = int(re.split(' ', re.split('nsites= ', line)[1])[0]) #find the nsites to count the frequency count for .pfm file
elif line.startswith(' '): #each line with information about frequency starts in MEME format with ' '
for i in range(len(rows)):
rows[i].append(str(round(float(re.findall(r'\S+', line)[i])*nsites))) #split the line, do not mention how much whitespaces are in between, multiply it with nsites and save it to the corresponding row
lines = lines + 1
#write the last motif
for row in rows:
written_file.write('\t'.join(row) + '\n')
written_file.close()
read_file.close()
return splitted_motifs
def convert_pfm_to_meme(motifs, output_directory):
#i can only convert the file to meme, if motifs file is in .pfm format
#first we need to split the pfm motifs as the jaspar2meme does not work with the files containing several motifs, but with the directory consisting files each with only one motif in pfm format
pfm_motifs = read_pfm(motifs, output_directory)
converted_name = os.path.join(output_directory, "converted_motifs.meme")
os.system("jaspar2meme -pfm " + output_directory + " > " + converted_name)
#need to call split motifs for meme file
splitted_motifs = split_motifs(converted_name, output_directory, "fimo")
remove_file(converted_name)
return splitted_motifs
#if there are chars that are not allowed, they will be replaced with '_', to the possibly invalid names there will be added '_' at the beginning of the name
def check_name(name_to_test):
badchars= re.compile(r'[^A-Za-z0-9_. ]+|^\.|\.$|^ | $|^$')
badnames= re.compile(r'(aux|com[1-9]|con|lpt[1-9]|prn)(\.|$)')
#replace all the chars that are not allowed with '_'
name = badchars.sub('_', name_to_test)
#check for the reserved by the os names
if badnames.match(name):
name = '_' + name
return name
#use fimo to make a file
def call_fimo(fimo_data, p_value, one_motif, genome, output_directory):
#make the filename for the fimo output
fimo_output_file = os.path.join(output_directory, "fimo_output_" + os.path.splitext(os.path.basename(one_motif))[0] + ".txt")
fimo_output_unsorted = os.path.join(output_directory, "fimo_output_unsorted_" + os.path.splitext(os.path.basename(one_motif))[0] + ".txt")
#check if user needs special options for the fimo
if fimo_data != None:
fimo_data = fimo_data + " --thresh " + str(p_value) + " "
else:
fimo_data = "--thresh " + str(p_value) + " " #add the passed p value to the fimo options
#call fimo for this motif and save the output to a temporary file
send_to_fimo = "fimo --text --no-qvalue " + fimo_data + one_motif + " " + genome + " > " + fimo_output_unsorted
logger.info('fimo proceed the data using this call ' + send_to_fimo)
fimo_stdout = subprocess.getoutput(send_to_fimo)
#the normal output from fimo starts with Using motif ..., so print it from the logger, otherwise print what else fimo says
if fimo_stdout.startswith("Using") and re.split('\n', fimo_stdout)[1]:
logger.info('info from fimo: ' + re.split('\n', fimo_stdout)[0].rstrip())
logger.info('info from fimo: ' + re.split('\n', fimo_stdout)[1].rstrip())
else: #there were some problems with fimo, so we want to see what they were
logger.info('info from fimo: ' + fimo_stdout)
if not os.path.isfile(fimo_output_unsorted):
logger.info('the usage of fimo was crashed, there is no required output file, the exit is forced')
sys.exit()
if os.stat(fimo_output_unsorted).st_size == 0: #if the output of fimo is empty
fimo_output_unsorted = fimo_output_unsorted.replace('unsorted_', '')
return fimo_output_unsorted
else:
#if the file was converted from pfm, the second column contains the positions, so we want to sort using this column, and not the next one
second_line = subprocess.getoutput("sed -n '2{p;q}' " + fimo_output_unsorted)
if re.split('\t', second_line)[2].startswith("chr"): #the re.split[1] is a ' ', so take the [2]
os.system("tail -n +2 " + fimo_output_unsorted + " | sort -k 2 -V > " + fimo_output_file) #while sorting do not regard the header written by fimo
else:
#we are sorting after the third column, which looks like chr1:123-126, -V means it will sort the digitals and not the strings
os.system("tail -n +2 " + fimo_output_unsorted + " | sort -k 3 -V > " + fimo_output_file)
#make sure the output of fimo exists
if not os.path.isfile(fimo_output_file):
logger.info('the sorting of the output file from the fimo was crashed, the exit is forced')
sys.exit()
else:
return fimo_output_file
def call_moods(one_motif, genome, output_directory, p_value, moods_bg):
# setting standard parameters for moods
pseudocount = 0.0001
if moods_bg == None:
bg = MOODS.tools.flat_bg(4)
else:
bg = tuple(moods_bg)
logger.info("moods will work with the p_value " + str(p_value) + " and the bg " + str(bg))
motif_name = os.path.basename(one_motif)
moods_output_unsorted_name = os.path.join(output_directory, "moods_output_unsorted_" + os.path.splitext(motif_name)[0] + ".txt")
moods_output_file_unsorted = open(moods_output_unsorted_name, 'w')
moods_output_name = os.path.join(output_directory, "moods_output_" + os.path.splitext(motif_name)[0] + ".txt")
moods_output_file = open(moods_output_name, 'w')
matrix_names = [os.path.basename(one_motif)]
matrices = []
matrices_rc = []
valid, matrix = pfm_to_log_odds(one_motif, bg, pseudocount)
key_for_bed_dict = ''
if valid:
logger.info("please be patient, moods is working on the data")
matrices.append(matrix)
matrices_rc.append(MOODS.tools.reverse_complement(matrix,4))
matrices_all = matrices + matrices_rc
thresholds = [MOODS.tools.threshold_from_p(m, bg, p_value, 4) for m in matrices_all]
scanner = MOODS.scan.Scanner(7)
scanner.set_motifs(matrices_all, bg, thresholds)
with open(genome) as handle:
seq_iterator = bio.SimpleFastaParser(handle)
for header, seq in seq_iterator:
header_splitted = re.split(r':', header)
if len(header_splitted) == 1: #if there are no positions given
header = header + ":0-" #set the first position as 0 and split it once more
header_splitted = re.split(r':', header)
logger.info("moods works with " + header)
else: #the given genome file is a file with peaks, so use the header of the peak as a key to search in the bed dictionary for additional information later on
key_for_bed_dict = header
chromosom = header_splitted[0]
positions = re.split(r'-', header_splitted[-1])
results = scanner.scan(seq)
fr = results[:len(matrix_names)] #forward strand
rr = results[len(matrix_names):] #reverse strand
results = [[(r.pos, r.score, '+', ()) for r in fr[i]] +
[(r.pos, r.score, '-', ()) for r in rr[i]] for i in range(len(matrix_names))] #use + and - to indicate strand
for (matrix, matrix_name, result) in zip(matrices, matrix_names, results):
motif_id = re.split(r'_', matrix_name)[-1] #find the id of the given morif
motif_alternate_name = matrix_name.replace(motif_id, '')[:-1] #the alternate name of the motif is the name of the file without id and with cutted last character, that is _
if len(matrix) == 4:
l = len(matrix[0])
if len(matrix) == 16:
l = len(matrix[0] + 1)
for r in sorted(result, key=lambda r: r[0]):
strand = r[2]
pos = r[0]
hitseq = seq[pos:pos+l] #sequence
#score = r[1]
score = format(r[1], '.15f') #round to 15 digits after floating point, already type str
if key_for_bed_dict != '':
start = pos + 1
end = pos + len(hitseq)
chromosom = key_for_bed_dict #instead of only the name of chromosom write the key to search in the bed_file
else:
start = int(positions[0]) + pos + 1
end = start + len(hitseq) - 1
#moods_output_file_unsorted.write('\t'.join([motif_id, motif_alternate_name, chromosom, str(start), str(end), strand, str(score)]) + '\n')
moods_output_file_unsorted.write('\t'.join([motif_id, motif_alternate_name, chromosom, str(start), str(end), strand, score]) + '\n')
moods_output_file_unsorted.close()
moods_output_file.close()
#now sort the output of moods
os.system("cat " + moods_output_unsorted_name + " | sort -k 1 -V > " + moods_output_name)
return moods_output_name
else:
logger.info("The input for moods was not validated by the MOODS.parsers.pfm. Please check if it has the right format (note that the MOODS accepts only the old version of .pfm files, that is one without the header containing the name and id of the motif)")
sys.exit()
#help function for the moods call, convert pfm to log odds
def pfm_to_log_odds(filename, bg, pseudocount):
if pfm(filename):
mat = MOODS.parsers.pfm_to_log_odds(filename, bg, pseudocount)
if len(mat) != 4: #if something went wrong, the empty list will be returned
return False, mat
else:
return True, mat
else:
logger.info('please make sure the motif file has a .pfm format needed for moods')
sys.exit()
#help function for the moods call, check if the file is in a pfm format using moods
def pfm(filename):
mat = MOODS.parsers.pfm(filename)
if len(mat) != 4:
return False
else:
return True
# calculate the real positions of TFs, if needed, resolve the overlaps, and write to the output file
def write_output_file(input_file, bed_dictionary, resolve_overlaps):
if os.path.basename(input_file).startswith("moods"):
name_without_moods_or_fimo = input_file.replace('moods_output_', '')
used_tool = "moods"
else:
name_without_moods_or_fimo = input_file.replace('fimo_output_', '')
used_tool = "fimo"
output_file_name = os.path.splitext(name_without_moods_or_fimo)[0] + ".bed"
logger.info('writing the output file ' + output_file_name)
output_file = open(output_file_name, 'w')
#calculate the real positions of TFs and write the information in the output file
with open(input_file) as read_file:
overlap = []
printed_line = []
last_line = []
key_for_bed_dict = ''
for line in read_file:
if not line.startswith('#'):
line_to_write = []
line_array = re.split(r'\t', line.rstrip('\n'))
chromosom_and_positions = re.split(r':', line_array[2])
if len(chromosom_and_positions) == 1: #the whole genome was given, there is nothing to split
chromosom = line_array[2]
start = line_array[3]
end = line_array[4]
else:
positions = re.split(r'-', chromosom_and_positions[-1])
chromosom = chromosom_and_positions[0]
start = str(int(positions[0]) + int(line_array[3]))
end = str(int(positions[0]) + int(line_array[4]))
key_for_bed_dict = line_array[2] #use only if there is a bed_dictionary in input
#------- these are 5 needed columns to succesfully proceed the data
name = os.path.splitext(os.path.basename(name_without_moods_or_fimo))[0]
score = line_array[6]
line_to_write.extend([chromosom, start, end, name, score])
#------ here the additional information coule be added to the output file
strand_inf = line_array[5]
line_to_write.append(strand_inf)
if used_tool == "fimo":
p_value = line_array[7]
line_to_write.append(p_value)
#if the dictionary is not empty check for the information corresponding to these positions
if bed_dictionary and key_for_bed_dict in bed_dictionary:
line_to_write.append('\t'.join(bed_dictionary[key_for_bed_dict]))
line_to_write.insert(0, "write") #insert a flag to know if the line should be written or not
last_line = line_to_write #save the line in case it is the last line and if due to the check_overlap it could not be printed
if resolve_overlaps:
overlap, line_to_write, printed_line = check_overlap(line_to_write, overlap, printed_line, output_file)
write_line_not_overlap(output_file, line_to_write)
if not last_line[0].startswith('write'): #it could be that the write flag was deleted from the last_line so append it back
overlap.insert(0, "write")
#if there is already any printed line, check if the saved last line was already printed. Otherwise print it
if resolve_overlaps:
if printed_line:
if last_line[1] != printed_line[1] or last_line[2] != printed_line[2]:
write_line_not_overlap(output_file, last_line)
output_file.close()
def write_line_not_overlap(output_file, line_to_write):
if line_to_write: #if line_to_write is not empty
if line_to_write[0].startswith('write'): #if the line does not contain an overlap, it contains the flag "write" at the first position
line_to_write.pop(0) #delete the flag
output_file.write('\t'.join(line_to_write) + '\n')
def check_overlap(line_to_write, overlap, printed_line, output_file):
is_overlap = None
if not overlap: #if the overlap list is empty
is_overlap = False
else: #if the overlap list is not empty
if not overlap[0].startswith('write'): #it could be that the write flag was deleted from the overlap so append it back to make sure the next if clauses run right
overlap.insert(0, "write")
if line_to_write[1] == overlap[1] and float(line_to_write[2]) < float(overlap[3]): #the current line could overlap the previous because the start of the current line is smaller than the end of the previous one and they are both on the one chromosom
#if p value in the current line is smaller than p value in the previous line (or score is bigger), save the current line as possible overlap for future
if float(line_to_write[5]) > float(overlap[5]):
is_overlap = False
else:
#if the p value in the current line is greater than p value in the previous line or are these both p values the same, the current line will not be printed, but also it will not be saved
line_to_write.pop(0)
is_overlap = None
else: #it is an other chromosom or the start at the current line is greater or the same as the end of the previous one
if printed_line != overlap:
is_overlap = True
else:
is_overlap = False
if is_overlap == False:
overlap = line_to_write #save the current line
line_to_write.pop(0) #do not print anything due to deleting the flag ("write")
elif is_overlap == True:
if not overlap[0].startswith('write'):
overlap.insert(0, "write")
printed_line = overlap #the previous line is saved as temporary line to print it later on
overlap = line_to_write #save the current line
line_to_write = printed_line #print the temporary saved line
return overlap, line_to_write, printed_line
def remove_file(file):
if os.path.isfile(file):
os.remove(file)
def clean_directory(cleans, output_directory, motif, tool_output_file):
fimo_output_unsorted = os.path.join(tool_output_file.replace("fimo_output", "fimo_output_unsorted"))
moods_output_unsorted = os.path.join(tool_output_file.replace("moods_output", "moods_output_unsorted"))
for clean in cleans:
if clean == 'all':
remove_file(motif)
remove_file(tool_output_file)
remove_file(fimo_output_unsorted)
remove_file(moods_output_unsorted)
elif clean == 'fimo_output':
if os.path.basename(tool_output_file).startswith("fimo"):
remove_file(tool_output_file)
remove_file(fimo_output_unsorted)
elif clean == 'cut_motifs':
remove_file(motif)
elif clean == 'moods_output':
if os.path.basename(tool_output_file).startswith("moods"):
remove_file(tool_output_file)
remove_file(fimo_output_unsorted)
def tool_make_output(usage, motif, genome, output_directory, cleans, p_value, bed_dictionary, fimo_data, resolve_overlaps, moods_bg):
try:
if usage == "fimo":
tool_output_file = call_fimo(fimo_data, p_value, motif, genome, output_directory)
elif usage == "moods":
tool_output_file = call_moods(motif, genome, output_directory, p_value, moods_bg)
output = write_output_file(tool_output_file, bed_dictionary, resolve_overlaps)
finally:
clean_directory(cleans, output_directory, motif, tool_output_file)
def multiprocess(motifs, genome, output_directory, cleans, fimo_data, p_value, bed_dictionary, cpu_count, resolve_overlaps, usage, moods_bg):
if cleans == None:
cleans = ['all']
pool = multiprocessing.Pool(cpu_count) #by default is cpu_count 2
length = len(motifs) #the number of the motifs to find the percentage of the job that was done
step = 100/length #the percentage that should be added after the job with each single motif is done
tasks = [] #here the jobs done by processes are saved
for motif in motifs:
tasks.append(pool.apply_async(tool_make_output, args = (usage, motif, genome, output_directory, cleans, p_value, bed_dictionary, fimo_data, resolve_overlaps, moods_bg, )))
tasks_done = sum([task.ready() for task in tasks]) #the number of the processes that ended their job
#check the number of the processes that are ready till the number of them reaches the number of processes started in the pool
while tasks_done < len(tasks):
#if the number of ready processes has changed, save the new number and print the percentage of the job done
if sum([task.ready() for task in tasks]) != tasks_done:
tasks_done = sum([task.ready() for task in tasks])
sys.stdout.write("%-100s| %d%% \r" % (''*tasks_done, step*tasks_done))
sys.stdout.flush()
sys.stdout.write("\n")
#update the number of ready processes each 0.05 seconds
time.sleep(0.05)
pool.close()
pool.join() #make sure all the processes are done and exit
#the processes should not delete the merged genome file
#so make sure if this file is needed, otherwise delete it
for clean in cleans:
if clean == 'all' or clean == 'merge_output':
for filename in os.listdir(output_directory):
if filename == "output_merge.fa":
remove_file(genome)
if clean != 'nothing':
logger.info('the directory ' + output_directory + ' was cleaned, only the required files were left')
def make_bed_dictionary(bed_file):
bed_dictionary = {}
with open(bed_file) as read_bed_file:
for bed_line in read_bed_file:
bed_line_array = re.split(r'\t', bed_line.rstrip('\n'))
if bed_line_array[1].isdigit() and bed_line_array[2].isdigit() and int(bed_line_array[1]) <= int(bed_line_array[2]): #in the real bedfile the second column is a start position, and the third column is an end position, so we are checking if these are integers and if the start position is smaller than the end one
key = bed_line_array[0] + ":" + bed_line_array[1] + "-" + bed_line_array[2]
value = []
for i in range(3, len(bed_line_array)):
value.append(bed_line_array[i])
if not value: #if there is no bonus information in the original bed file, add a "." to the coulmn in the output bed file
value = ["."]
bed_dictionary[key] = value
else: #this is not a bed file, force exit
logger.info('please make sure the input bed file has a right format, the problem occured on the line ' + bed_line)
sys.exit()
read_bed_file.close()
return bed_dictionary
def is_fasta(check_fasta):
if not os.path.isfile(check_fasta):
logger.info('there is no file with genome, the exit is forced')
sys.exit()
else:
# modified code from https://stackoverflow.com/questions/44293407/how-can-i-check-whether-a-given-file-is-fasta
with open(check_fasta, "r") as handle:
fasta = SeqIO.parse(handle, "fasta")
return any(fasta) # False when `fasta` is empty, i.e. wasn't a FASTA file
def check_existing_input_files(args):
if not args.motifs or not args.genome:
logger.info('there is no satisfied input, please enter --help or -h to learn how to use this tool')
sys.exit()
elif not is_fasta(args.genome):
logger.info('please make sure the input genome file has a fasta format')
sys.exit()
#check if the file with motifs exists
elif not os.path.isfile(args.motifs):
logger.info('there is no file with motifs, the exit is forced')
sys.exit()
#if the bedfile was given as input, check if this file exists
elif args.bed_file:
if not os.path.isfile(args.bed_file):
logger.info('there is no such bed file ' + args.bed_file + ', the exit is forced')
sys.exit()
def check_fimo_version():
fimo_version = subprocess.getoutput("fimo --version") #works only on python 3.4
#fimo_version = int(fimo_version.replace('.', '')) #replace the . in the version to be able to compare it as int
if fimo_version < "4.12.0":
logger.info('please make sure you are using fimo version 4.12.0 or the newer one')
sys.exit()
def main():
args = parse_args()
if args.use == "fimo":
check_fimo_version()
#if user do not want to see the information about the status of jobs, remove the handler, that writes to the terminal
if args.hide_info:
#logger.disabled = True
logger.removeHandler(ch)
check_existing_input_files(args)
#check if there is an existing directory that user gave as input, otherwise create this directory from the path provided from the user
check_directory(args.output_directory)
splitted_motifs = split_motifs(args.motifs, args.output_directory, args.use)
#check if there is a .bed file to merge the genome file with. If so, merge them
if args.bed_file:
bed_dictionary = make_bed_dictionary(args.bed_file)
args.genome = merge(args.genome, args.bed_file, args.output_directory)
else:
bed_dictionary = {}
#if the usage is moods, call moods, otherwise call fimo
multiprocess(splitted_motifs, args.genome, args.output_directory, args.cleans, args.fimo, args.p_value, bed_dictionary, args.cores, args.resolve_overlaps, args.use, args.moods_bg)
for handler in logger.handlers:
handler.close()
logger.removeFilter(handler)
if __name__ == "__main__":
main()