-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathP2_dataloader.py
67 lines (55 loc) · 1.97 KB
/
P2_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import csv
import glob
import os
import torch
from PIL import Image
from torch.utils.data.dataset import Dataset
class ImageFolderDataset(Dataset):
def __init__(self, folder_path, transform, label_csv=None):
self.Filenames = glob.glob(os.path.join(folder_path, "*.jpg"))
self.Transform = transform
self.fname2label = None
if label_csv is not None:
self.fname2label = dict()
with open(label_csv, 'r') as f:
rows = csv.reader(f)
next(rows)
for row in rows:
self.fname2label[row[1]] = row[2]
all_labels = sorted(set(self.fname2label.values()))
self.label2idx = {v: k for k, v in enumerate(all_labels)}
# import json
# with open(os.path.join(os.path.dirname(label_csv), 'label2idx.json'), 'w') as f:
# json.dump(self.label2idx, f, indent=2)
def __getitem__(self, idx):
data_dict = dict()
data_dict['img'] = self.Transform(Image.open(self.Filenames[idx]))
data_dict['filename'] = os.path.basename(self.Filenames[idx])
if self.fname2label:
data_dict['label'] = self.label2idx[self.fname2label[data_dict['filename']]]
return data_dict
def __len__(self):
return len(self.Filenames)
if __name__ == "__main__":
from torchvision import transforms
from tqdm import tqdm
# calculates mean and std of training set
train_transform = transforms.Compose([
transforms.Resize(128),
transforms.ToTensor(),
])
dst = ImageFolderDataset(
"hw4_data/office/train",
train_transform,
"hw4_data/office/train.csv",
)
mean = torch.zeros(3)
std = torch.zeros(3)
for data in tqdm(dst):
x = data['img']
mean += x.mean(dim=(1, 2))
std += x.std(dim=(1, 2))
mean /= len(dst)
std /= len(dst)
print(mean, std)
# [0.4706, 0.4495, 0.4031] [0.2176, 0.2152, 0.2150]