-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmidi_reader.py
72 lines (58 loc) · 2.66 KB
/
midi_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import sys
import tensorflow as tf
Py3 = sys.version_info[0] == 3
def _read_MIDItxt(filename):
with open(filename, "r") as text_file:
return list(map(int, text_file.read().split(' ')))
def ptb_raw_data(data_path=None):
##定義0~88為pitch,89為延續上一個音,90為沒有音
midi_idx_path = os.path.join(data_path, "melodygen.midi_idx.txt")
train_path = os.path.join(data_path, "melodygen.train.txt")
valid_path = os.path.join(data_path, "melodygen.valid.txt")
test_path = os.path.join(data_path, "melodygen.test.txt")
midi_idx = _read_MIDItxt(midi_idx_path)
train_data = _read_MIDItxt(train_path)
valid_data = _read_MIDItxt(valid_path)
test_data = _read_MIDItxt(test_path)
midi_idx_numbers = len(midi_idx)
return train_data, valid_data, test_data, midi_idx_numbers
def ptb_producer(raw_data, batch_size, num_steps, name=None):
with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)
data_len = tf.size(raw_data)
batch_len = data_len // batch_size
data = tf.reshape(raw_data[0 : batch_size * batch_len],
[batch_size, batch_len])
epoch_size = (batch_len - 1) // num_steps
assertion = tf.assert_positive(
epoch_size,
message="epoch_size == 0, decrease batch_size or num_steps")
with tf.control_dependencies([assertion]):
epoch_size = tf.identity(epoch_size, name="epoch_size")
i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
x = tf.strided_slice(data, [0, i * num_steps],
[batch_size, (i + 1) * num_steps])
x.set_shape([batch_size, num_steps])
y = tf.strided_slice(data, [0, i * num_steps + 1],
[batch_size, (i + 1) * num_steps + 1])
y.set_shape([batch_size, num_steps])
return x, y