-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsycl-mandelbrot-usm.cpp
172 lines (135 loc) · 6.63 KB
/
sycl-mandelbrot-usm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
// #define _USE_MATH_DEFINES
// #include <math.h>
// #include <iostream>
#include <algorithm>
#include <stdlib.h> // pocketpt, single-source GLSL path tracer by Reinhold Preiner, 2020
#include <stdio.h> // based on smallpt by Kevin Beason
#include <chrono>
#include <stdint.h>
#include <array>
#include <sycl/sycl.hpp>
// platform specific defines
#if defined(_WIN32) || defined(WIN32)
int fileopen(FILE **f, const char *filename) { return (int)fopen_s(f, filename, "w"); }
#elif defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
int fileopen(FILE **f, const char *filename) { *f = fopen(filename, "w"); return 0; }
#endif
using uint3 = std::array<uint32_t, 3>;
using vec2 = std::array<float, 2>;
using vec3 = std::array<float, 3>;
using vec4 = std::array<float, 4>;
namespace {
inline float clamp(const float x) {
return std::max( std::min( 1.0f, x ), 0.0f );
}
inline int toInt(float x) {
return int(sycl::pow(clamp(x), 1.0f / 2.2f) * 255.0f + 0.5f);
} // performs gamma correction!
// Create an exception handler for asynchronous SYCL exceptions
static auto exception_handler = [](sycl::exception_list e_list) {
for (std::exception_ptr const &e : e_list) {
try {
std::rethrow_exception(e);
}
catch (std::exception const &e) {
#if _DEBUG
std::cout << "Failure" << std::endl;
#endif
std::terminate();
}
}
};
} // namespace
int main(int argc, char *argv[]) {
//-- parse arguments
const int32_t numIterations = (argc>1) ? atoi(argv[1]) : 126; // samples per pixel
const int32_t resy = (argc>2) ? atoi(argv[2]) : 500; // vertical pixel resolution
const int32_t resx = resy; // horiziontal pixel resolution
const uint32_t numPixels = resx * resy;
const float fresx = static_cast< float >( resx );
const float fresy = static_cast< float >( resy );
auto tstart = std::chrono::system_clock::now(); // take start time
// The default device selector will select the most performant device.
auto d_selector{sycl::default_selector_v};
try {
sycl::queue q(d_selector, exception_handler);
// Print out the device information used for the kernel code.
std::cout << "Running on device: " << q.get_device().get_info<sycl::info::device::name>() << "\n";
printf( "%d x %d @ %d iterations\n", resx, resy, numIterations );
// Create arrays with "array_size" to store input and output data. Allocate
// unified shared memory so that both CPU and device can access them.
const uint32_t numPixels = resx * resy;
vec4* pMandel = sycl::malloc_shared<vec4>(numPixels, q);
if ( pMandel == nullptr ) {
std::cout << "Shared memory allocation failure.\n";
return -1;
}
// vec2 centerComplex{ 0.0f, 0.0f };
// vec2 halfDimComplex{ 2.0f, 2.0f };
vec2 centerComplex{ -0.3f, 0.4f };
vec2 halfDimComplex{ 1.0f, 1.0f };
// Initialize radiances with 0.0f
for (size_t i = 0; i < numPixels; i++) { pMandel[i] = vec4{ 0.0f, 0.0f, 0.0f, 0.0f }; }
{
// Create the range object for the arrays.
sycl::range<1> num_items{numPixels};
// Use parallel_for to run vector addition in parallel on device. This
// executes the kernel.
// 1st parameter is the number of work items.
// 2nd parameter is the kernel, a lambda that specifies what to do per
// work item. the parameter of the lambda is the work item id.
// SYCL supports unnamed lambda kernel by default.
auto e = q.parallel_for(
numPixels,
[=](auto gid) {
// determine what pixel we are calculating in this thread
// threadId is unique and is [0,pixelCount]
const uint32_t threadId = static_cast<uint32_t>(gid);
const uint32_t x = threadId % resx;
const uint32_t y = threadId / resx;
const uint32_t addr = x + ( resy - 1 - y ) * resx;
// const uint32_t addr = x + y * resx;
const float fx = static_cast<float>( x );
const float fy = static_cast<float>( y );
float cx = centerComplex[0] - halfDimComplex[0] + 2.0f * halfDimComplex[0] * ( fx / (fresx - 1.0f) );
float cy = centerComplex[1] - halfDimComplex[1] + 2.0f * halfDimComplex[1] * ( fy / (fresy - 1.0f) );
const float sx = cx;
const float sy = cy;
int32_t iter = 0;
for ( ; iter < numIterations; iter++ ) {
const float cx2 = cx*cx;
const float cy2 = cy*cy;
if ( cx2 + cy2 >= 4.0f ) { break; }
float ncx = cx2 - cy2;
float ncy = 2.0f * cx * cy;
cx = ncx + sx;
cy = ncy + sy;
}
if ( iter == numIterations ) { iter = 0; }
const float fiter = static_cast<float>( iter ) / static_cast<float>( numIterations - 1 );
pMandel[ addr ] = vec4{ fiter, fiter, fiter, fiter };
}
);
// q.parallel_for() is an asynchronous call. SYCL runtime enqueues and runs
// the kernel asynchronously. Wait for the asynchronous call to complete.
e.wait();
}
auto tend = std::chrono::system_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::duration<double>>(tend - tstart).count();
printf( "render duration = %f sec\n", duration );
//-- write inverse sensor image to file
FILE *file;
int err = fileopen(&file, "sycl-mandelbrot-usm.ppm");
fprintf(file, "P3\n");
fprintf(file, "# num iterations: %d\n", numIterations);
fprintf(file, "# rendering time: %f s\n", duration);
fprintf(file, "%d %d\n%d\n", resx, resy, 255);
for (uint32_t i = 0; i < numPixels; i++) {
fprintf(file, "%d %d %d ", toInt(pMandel[i][0]), toInt(pMandel[i][1]), toInt(pMandel[i][2]));
}
sycl::free(pMandel, q);
} catch (sycl::exception const &e) {
std::cout << "An exception is caught: " << e.what() << std::endl;
std::terminate();
}
}