-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain_manipulation.py
executable file
·237 lines (191 loc) · 11 KB
/
train_manipulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/env python3
# coding: utf-8
# Basic imports
import os
import re
import sys
import json
import argparse
from loguru import logger
# Disable unimportant logging and import TF
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Helper functions
from helpers import fsutil, dataset, utils
from compression import codec
@utils.logCall
def batch_training(nip_model, camera_names=None, root_directory=None, loss_metric='L2', trainables=None,
jpeg_quality=None, jpeg_mode='soft', manipulations=None, dcn_model=None, downsampling='pool',
end_repetition=10, start_repetition=0, n_epochs=1001, patch=128, fan_args={},
use_pretrained=True, lambdas_nip=None, lambdas_dcn=None, nip_directory=None, split='120:30:4'):
"""
Repeat training for multiple NIP regularization strengths.
"""
if nip_model is None:
raise FileNotFoundError('NIP model not specified!')
if nip_directory is None or not os.path.isdir(nip_directory):
raise FileNotFoundError('Invalid NIP snapshots directory: {}'.format(nip_directory))
if root_directory is None:
raise FileNotFoundError('Invalid root directory: {}'.format(root_directory))
if not os.path.isdir(root_directory):
os.makedirs(root_directory)
if jpeg_quality is not None:
if re.match('^[0-9]+$', jpeg_quality):
jpeg_quality = int(jpeg_quality)
elif re.match('^[0-9\\,]+$', jpeg_quality):
jpeg_quality = tuple(int(x) for x in re.findall('([0-9]+)', jpeg_quality))
else:
raise FileNotFoundError('Invalid JPEG quality: expecting a number or comma separated numbers & got: {}'.format(jpeg_quality))
# Lazy loading to minimize delays when checking cli parameters
from training.manipulation import train_manipulation_nip
from workflows import manipulation_classification
camera_names = camera_names or ['D90', 'D7000', 'EOS-5D', 'EOS-40D']
training = {
'use_pretrained_nip': use_pretrained,
'n_epochs': n_epochs,
'patch_size': patch,
'batch_size': 20,
'validation_schedule': 50,
'learning_rate': 1e-4,
'n_images': int(split.split(':')[0]),
'v_images': int(split.split(':')[1]),
'val_n_patches': int(split.split(':')[2]),
}
# Setup trainable elements and regularization -------------------------------------------------
trainables = trainables if trainables is not None else set()
for tr in trainables:
if tr not in {'nip', 'dcn'}:
raise ValueError('Invalid specifier of trainable elements: only nip, dcn allowed!')
training['trainable'] = trainables
if lambdas_nip is None or len(lambdas_nip) == 0:
lambdas_nip = [1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 0.1, 0.25, 0.5, 1] if 'nip' in trainables else [0]
else:
lambdas_nip = [float(x) for x in lambdas_nip]
if lambdas_dcn is None or len(lambdas_dcn) == 0:
lambdas_dcn = [0.1, 0.05, 0.01, 0.005, 0.001] if 'dcn' in trainables else [0]
else:
lambdas_dcn = [float(x) for x in lambdas_dcn]
# Setup the distribution channel --------------------------------------------------------------
if downsampling not in ['pool', 'bilinear', 'none']:
raise ValueError('Unsupported channel down-sampling')
if dcn_model is None and jpeg_quality is None:
jpeg_quality = 50
compression_params = {}
if jpeg_quality is not None:
compression_params['quality'] = jpeg_quality
compression_params['codec'] = jpeg_mode
else:
compression_params['dirname'] = dcn_model
if jpeg_quality is not None:
compression = 'jpeg'
elif dcn_model is not None:
compression = 'dcn'
else:
compression = 'none'
distribution = {
'downsampling': downsampling,
'compression': compression,
'compression_params': compression_params
}
# Construct the workflow ----------------------------------------------------------------------
manipulations = manipulations or ['sharpen', 'resample', 'gaussian', 'jpeg']
flow = manipulation_classification.ManipulationClassification(nip_model, manipulations, distribution, fan_args, trainables, raw_patch_size=training['patch_size'])
logger.info(f'Workflow: {flow.summary()}')
logger.info(f'\n{flow.details()}')
# Iterate over cameras and train the entire workflow ------------------------------------------
for camera_name in camera_names:
logger.info(f'Loading data for {camera_name}')
training['camera_name'] = camera_name
# Find the right dataset to load
if nip_model == 'ONet':
# TODO Dirty hack - if the NIP model is the dummy empty model, load RGB images only
data_directory = os.path.join(root_directory, 'rgb', camera_name)
patch_mul = 2
load = 'y'
else:
# Otherwise, load (RAW, RGB) pairs for a specific camera
data_directory = os.path.join(root_directory, 'raw', 'training_data', camera_name)
patch_mul = 2
load = 'xy'
# If the target root directory has no training images, fallback to use the default root
if not os.path.isdir(data_directory):
logger.warning('Training images not found in the target root directory - using default root as image source')
data_directory = data_directory.replace(root_directory, 'data/').replace('//', '/')
# Load the image dataset
data = dataset.Dataset(data_directory, n_images=training['n_images'], v_images=training['v_images'], load=load, val_rgb_patch_size=patch_mul * training['patch_size'], val_n_patches=training['val_n_patches'])
logger.info('Training loop: {} repetitions / {} NIP lambdas {} / {} DCN lambdas {}'.format(
end_repetition - start_repetition, len(lambdas_nip), lambdas_nip, len(lambdas_dcn), lambdas_dcn))
# Repeat training with different loss weights
for rep in range(start_repetition, end_repetition):
for lr in lambdas_nip:
for lc in lambdas_dcn:
training['lambda_nip'] = lr
training['lambda_dcn'] = lc
training['run_number'] = rep
train_manipulation_nip(flow, training, data, {'root': root_directory, 'nip_snapshots': nip_directory})
def main():
parser = argparse.ArgumentParser(description='NIP & FAN optimization for manipulation detection')
group = parser.add_argument_group('general parameters')
group.add_argument('--nip', dest='nip_model', action='store', required=True,
help='the NIP model (INet, UNet, DNet)')
group.add_argument('--cam', dest='cameras', action='append',
help='add cameras for evaluation (repeat if needed)')
group.add_argument('--manip', dest='manipulations', action='store', default='sharpen,resample,gaussian,jpeg',
help='comma-sep. list of manipulations (:strength), e.g., : {}'.format('sharpen:1,jpeg:80,resample,gaussian'))
group.add_argument('--fan', dest='fan_args', default=None,
help='Set hyper-parameters for the FAN model (JSON string)')
# Directories
group = parser.add_argument_group('directories')
group.add_argument('--dir', dest='root_dir', action='store', default='./data/m/playground/',
help='the root directory for storing results')
group.add_argument('--nip-dir', dest='nip_directory', action='store', default='./data/models/nip/',
help='the root directory for storing results')
# Training parameters
group = parser.add_argument_group('training parameters')
group.add_argument('--loss', dest='loss_metric', action='store', default='L2',
help='loss metric for the NIP (L2, L1, SSIM)')
group.add_argument('--split', dest='split', action='store', default='120:30:4',
help='data split (#training:#validation:#validation_patches): e.g., 120:30:4')
group.add_argument('--ln', dest='lambdas_nip', action='append',
help='set custom regularization strength for the NIP (repeat for multiple values)')
group.add_argument('--lc', dest='lambdas_dcn', action='append',
help='set custom regularization strength for the DCN (repeat for multiple values)')
group.add_argument('--train', dest='trainables', action='append',
help='add trainable elements (nip, dcn)')
group.add_argument('--patch', dest='patch', action='store', default=256, type=int,
help='RGB patch size for NIP output (default 256)')
# Training scope and progress
group = parser.add_argument_group('training scope')
group.add_argument('--scratch', dest='from_scratch', action='store_true', default=False,
help='train NIP from scratch (ignore pre-trained model)')
group.add_argument('--start', dest='start', action='store', default=0, type=int,
help='first iteration (default 0)')
group.add_argument('--end', dest='end', action='store', default=10, type=int,
help='last iteration (exclusive, default 10)')
group.add_argument('--epochs', dest='epochs', action='store', default=1001, type=int,
help='number of epochs (default 1001)')
# Distribution channel
group = parser.add_argument_group('distribution channel')
group.add_argument('--jpeg', dest='jpeg_quality', action='store', default=None, type=str,
help='JPEG quality level (distribution channel)')
group.add_argument('--jpeg_mode', dest='jpeg_mode', action='store', default='soft',
help='JPEG approximation mode: sin, soft, harmonic')
group.add_argument('--dcn', dest='dcn_model', action='store', default=None,
help='DCN compression model path')
group.add_argument('--ds', dest='downsampling', action='store', default='pool',
help='Distribution channel sub-sampling: pool/bilinear/none')
args = parser.parse_args()
# Parse FAN args
try:
args.fan_args = json.loads(args.fan_args.replace('\'', '"')) if args.fan_args is not None else {}
except json.decoder.JSONDecodeError:
print('WARNING', 'JSON parsing error for: ', args.hyperparams_args.replace('\'', '"'))
sys.exit(2)
# Split manipulations
args.manipulations = args.manipulations.strip().split(',')
batch_training(args.nip_model, args.cameras, args.root_dir,
args.loss_metric, args.trainables, args.jpeg_quality, args.jpeg_mode,
args.manipulations, args.dcn_model, args.downsampling, patch=args.patch // 2, fan_args=args.fan_args,
use_pretrained=not args.from_scratch, start_repetition=args.start, end_repetition=args.end, n_epochs=args.epochs,
nip_directory=args.nip_directory, split=args.split, lambdas_nip=args.lambdas_nip, lambdas_dcn=args.lambdas_dcn)
if __name__ == "__main__":
main()