-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain_nip.py
executable file
·248 lines (193 loc) · 10.3 KB
/
train_nip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/usr/bin/env python3
# coding: utf-8
import os
import sys
import json
import argparse
import pandas as pd
import numpy as np
import helpers.debugging
from helpers import fsutil, dataset, utils
from training.pipeline import train_nip_model
# Set progress bar width
TQDM_WIDTH = 120
# Disable unimportant logging and import TF
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def get_parameters(csv_file, metrics=('ssim', 'psnr', 'loss', 'params')):
parameters = pd.DataFrame(columns=['scenario', 'label', 'active', 'run_group', 'params', 'model_code'])
if csv_file is not None:
parameters = parameters.append(pd.read_csv(csv_file), ignore_index=True, sort=True)
if len(parameters) == 0:
cli_params = {
'scenario': np.nan,
'label': 'command-line',
'active': True,
'run_group': np.nan
}
parameters = parameters.append(cli_params, ignore_index=True)
# If requested, add columns to include validation results
for key in metrics:
parameters[key] = np.nan
for col in parameters.columns:
if col.startswith('@'):
parameters[col] = parameters[col].apply(eval)
parameters = parameters.rename(columns={col: col[1:]})
return parameters
def main():
parser = argparse.ArgumentParser(description='Train a neural imaging pipeline')
parser.add_argument('-c', '--cam', dest='camera', action='store', help='camera')
parser.add_argument('-n', '--nip', dest='nip', action='store', help='add NIP for training (repeat if needed)')
parser.add_argument('--out', dest='out_dir', action='store', default='./data/models/nip',
help='output directory for storing trained NIP models')
parser.add_argument('--data', dest='data_dir', action='store', default='./data/raw/training_data/',
help='input directory with training data (.npy and .png pairs)')
parser.add_argument('--patch', dest='patch_size', action='store', default=128, type=int,
help='training patch size (RGB)')
parser.add_argument('-e', '--epochs', dest='epochs', action='store', default=-25000, type=int,
help='maximum number of training epochs')
parser.add_argument('--ha', dest='hyperparams_args', default=None, help='Set hyper-parameters / override CSV settings if needed (JSON string)')
parser.add_argument('--hp', dest='hyperparams_csv', default=None, help='CSV file with hyper-parameter configurations')
parser.add_argument('--resume', dest='resume', action='store_true', default=False,
help='Resume training from last checkpoint, if possible')
parser.add_argument('-s', '--split', dest='split', action='store', default='120:30:1',
help='data split with #training:#validation:#validation_patches - e.g., 120:30:1')
parser.add_argument('--dry', dest='dry', action='store_true', default=False,
help='Dry run (no training - only does model setup)')
parser.add_argument('--group', dest='run_group', action='store', type=int, default=None,
help='Specify run group (sub-selects scenarios for running)')
parser.add_argument('-f', '--fill', dest='fill', action='store', default=None,
help='Path of the extended scenarios table with appended result columns')
args = parser.parse_args()
if not args.camera:
print('A camera needs to be specified!')
parser.print_usage()
sys.exit(1)
if not args.nip:
print('No neural imaging pipeline specified (--nip)')
parser.print_usage()
sys.exit(1)
# Lazy load to prevent delays in printing syntax help
from models import pipelines
if not hasattr(pipelines, args.nip) or not issubclass(getattr(pipelines, args.nip), pipelines.NIPModel):
raise ValueError('Invalid NIP model ({})! Available NIPs: ({})'.format(args.nip, pipelines.supported_models))
data_directory = os.path.join(args.data_dir, args.camera)
out_directory_root = args.out_dir
# List of hyper-parameters
parameters = get_parameters(args.hyperparams_csv)
if args.run_group is not None:
parameters = parameters[parameters['run_group'] == args.run_group]
# Select only active hyper-parameter configurations
if len(parameters):
parameters = parameters[parameters['active']].drop(columns=['active', 'run_group'])
try:
if args.hyperparams_args is not None:
args.hyperparams_args = json.loads(args.hyperparams_args.replace('\'', '"'))
except json.decoder.JSONDecodeError:
print('WARNING', 'JSON parsing error for: ', args.hyperparams_args.replace('\'', '"'))
sys.exit(2)
if args.epochs < 0:
convergence_threshold = 1e-6
args.epochs = abs(args.epochs)
else:
convergence_threshold = None
threshold_label = f'(convergence threshold {utils.format_number(convergence_threshold)})' if convergence_threshold is not None else '(fixed)'
print('# Camera ISP Training')
print(f'Camera : {args.camera}')
print(f'NIP : {args.nip}')
print(f'Params (CSV) : {args.hyperparams_csv}')
print(f'Params override : {args.hyperparams_args}')
print(f'Input : {data_directory}')
print(f'Output : {out_directory_root}')
print(f'Resume : {args.resume}')
print(f'Epochs : {args.epochs} {threshold_label}')
print(f'\n# Hyper-parameter configurations [{len(parameters)} active configs]:\n')
print(parameters)
# Load training and validation data
training_spec = {
'seed': 1234,
'n_images': int(args.split.split(':')[0]),
'v_images': int(args.split.split(':')[1]),
'valid_patches': int(args.split.split(':')[2]),
'valid_patch_size': 256,
}
np.random.seed(training_spec['seed'])
# Load and summarize the training data
if not args.dry:
print('\n# Dataset')
data = dataset.Dataset(data_directory, n_images=training_spec['n_images'], v_images=training_spec['v_images'], load='xy', val_rgb_patch_size=training_spec['valid_patch_size'], val_n_patches=training_spec['valid_patches'])
print(data.summary())
for key in ['Training', 'Validation']:
print('{:>16s} [{:5.1f} GB] : X -> {}, Y -> {} '.format(
'{} data'.format(key),
helpers.debugging.mem(data[key.lower()]['x']) + helpers.debugging.mem(data[key.lower()]['y']),
data[key.lower()]['x'].shape,
data[key.lower()]['y'].shape
), flush=True)
# Lazy loading to prevent delays in basic CLI interaction
import tensorflow as tf
# Train the Desired NIP Models
model_log = {}
if not args.dry:
print('\n# Training\n')
# for pipe in args.nip:
for counter, (index, params) in enumerate(parameters.drop(columns=['scenario', 'label', 'params', 'model_code']).iterrows()):
if not args.dry:
print('## {} : Scenario #{} - {} / {}'.format(args.nip, index, counter + 1, len(parameters)))
# Set hyper-parameters from the list
params = {k: v for k, v in params.to_dict().items() if not utils.is_nan(v)}
# Override hyper-parameters if requested
if args.hyperparams_args is not None:
print('info: overriding hyperparameters from the CLI-supplied JSON')
params.update(args.hyperparams_args)
model = getattr(pipelines, args.nip)(**params)
if isinstance(model, pipelines.ClassicISP):
with open('config/cameras.json') as f:
cameras = json.load(f)
print('Configuring ISP to {}: {}'.format(args.camera, cameras[args.camera]))
model.set_cfa_pattern(cameras[args.camera]['cfa'])
model.set_srgb_conversion(np.array(cameras[args.camera]['srgb']))
# Remember trained models
model_code = model.model_code
parameters.loc[index, 'model_code'] = model.model_code
if model_code in model_log:
print('WARNING - model {} already registered by scenario {}'.format(model_code, index))
model_log[model_code].append(index)
else:
model_log[model_code] = [index]
# Log the number of parameters, process a sample batch first to make sure the model is initialized
# (does not happen when using custom tf.keras.Model classes)
model.process(np.random.uniform(size=(1, 128, 128, 4)).astype(np.float32))
parameters.loc[index, 'params'] = model.count_parameters()
# Run training
if not args.dry:
out_dir = train_nip_model(model, args.camera, args.epochs, validation_loss_threshold=convergence_threshold,
patch_size=args.patch_size, resume=args.resume, data=data, out_directory_root=args.out_dir)
else:
out_dir = os.path.join(out_directory_root, args.camera, model.model_code, model.scoped_name)
# Fill results
if args.fill is not None:
if len(model.performance['loss']['validation']) > 0:
for key in ['ssim', 'psnr', 'loss']:
parameters.loc[index, key] = model.pop_metric(key, 'validation') # results['performance'][key]['validation'][-1]
else:
results_json = os.path.join(out_dir, 'progress.json')
if os.path.isfile(results_json):
with open(results_json) as f:
results = json.load(f)
for key in ['ssim', 'psnr', 'loss']:
parameters.loc[index, key] = utils.get(results, f'performance.{key}.validation')[-1]
if args.fill is not None:
if args.fill == '-':
print('\n# Training Results')
print(parameters.to_string())
elif args.fill.endswith('.csv'):
print('Saving the results to {}'.format(args.fill))
parameters.to_csv(args.fill, index=False)
else:
raise ValueError('Invalid value for the output results file: {}'.format(args.fill))
if args.dry:
print('\n# List of instantiated models [{}]:'.format(len(model_log)))
for index, key in enumerate(sorted(model_log.keys())):
print('{} {:3d}. {} -> {}'.format(' ' if len(model_log[key]) == 1 else '!', index, key, model_log[key]))
if __name__ == "__main__":
main()