-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinference.py
508 lines (431 loc) · 28.9 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import copy
import functools
import logging
import os
import time
from typing import Mapping, Optional
import torch
import yaml
import math
import multiprocessing
import traceback
import tempfile
from argparse import ArgumentParser, Namespace, FileType
from rdkit.Chem import RemoveHs
from functools import partial
import numpy as np
import pandas as pd
from rdkit import RDLogger
from torch_geometric.loader import DataLoader
from datasets.process_mols import write_mol_with_coords, parse_pdb_from_path
from datasets.pdbbind import PDBBind, load_protein_ligand_df
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule
from utils.sampling import randomize_position, sampling
from utils.utils import get_model, get_available_devices, get_default_device, ensure_device
from utils.visualise import PDBFile, SidechainPDBFile
from tqdm import tqdm
from utils import esm as esm_utils
from utils.download import download_and_extract
from utils.posebusters_em import optimize_ligand_in_pocket
from pathlib import Path
from openmm.unit import megajoule, mole
if os.name != 'nt': # The line does not work on Windows
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (64000, rlimit[1]))
RDLogger.DisableLog('rdApp.*')
REPOSITORY_URL = 'https://github.com/plainerman/DiffDock-Pocket'
def _get_parser():
parser = ArgumentParser()
parser.add_argument('--config', type=FileType(mode='r'), default=None)
parser.add_argument('--complex_name', type=str, default='unnamed_complex', help='Name that the complex will be saved with')
parser.add_argument('--protein_ligand_csv', type=str, default=None, help='Path to a .csv file specifying the input as described in the README. If this is not None, it will be used instead of the --protein_path and --ligand parameters')
parser.add_argument('--protein_path', '--experimental_protein', type=str, default=None, help='Path to the protein .pdb file')
parser.add_argument('--ligand', type=str, default='COc(cc1)ccc1C#N', help='Either a SMILES string or the path to a molecule file that rdkit can read')
parser.add_argument('--flexible_sidechains', type=str, default=None, help='Specify which amino acids will be flexible. E.g., A:130-B:140 will make amino acid with id 130 in chain A, and id 140 in chain B flexible.')
parser.add_argument('--out_dir', type=str, default='results/user_inference', help='Directory where the outputs will be written to')
parser.add_argument('--save_visualisation', action='store_true', default=False, help='Save a pdb file with all of the steps of the reverse diffusion')
parser.add_argument('--samples_per_complex', type=int, default=10, help='Number of samples to generate')
parser.add_argument('--rigid', action='store_true', default=False, help='Override the arguments of the model and use a rigid model. Caution: In our tests this resulted in worse performance.')
parser.add_argument('--relax', action='store_true', default=False, help='Perform energy minimization on the top-1 ligand pose. See https://github.com/maabuu/posebusters_em for more information.')
parser.add_argument('--pocket_center_x', type=float, default=None, help='The x coordinate for the pocket center')
parser.add_argument('--pocket_center_y', type=float, default=None, help='The x coordinate for the pocket center')
parser.add_argument('--pocket_center_z', type=float, default=None, help='The x coordinate for the pocket center')
parser.add_argument('--tag', type=str, default='v1.0.0', help='GitHub release tag that will be used to download a model if none is specified.')
parser.add_argument('--model_cache_dir', type=str, default='.cache/model', help='Folder from where to load/restore the trained model')
parser.add_argument('--model_dir', type=str, default=None, help='Path to folder with trained score model and hyperparameters')
parser.add_argument('--ckpt', type=str, default='best_ema_inference_epoch_model.pt', help='Checkpoint to use for the score model')
parser.add_argument('--filtering_model_dir', type=str, default=None, help='Path to folder with trained confidence model and hyperparameters')
parser.add_argument('--filtering_ckpt', type=str, default='best_model.pt', help='Checkpoint to use for the confidence model')
parser.add_argument('--batch_size', type=int, default=32, help='')
parser.add_argument('--cache_path', type=str, default='.cache/data', help='Folder from where to load/restore cached dataset')
parser.add_argument('--no_random', action='store_true', default=False, help='Use no randomness in reverse diffusion')
parser.add_argument('--no_final_step_noise', action='store_true', default=False, help='Use no noise in the final step of the reverse diffusion')
parser.add_argument('--ode', action='store_true', default=False, help='Use ODE formulation for inference')
parser.add_argument('--inference_steps', type=int, default=30, help='Number of denoising steps')
parser.add_argument('--num_workers', type=int, default=1, help='Number of workers for creating the dataset')
parser.add_argument('--sigma_schedule', type=str, default='expbeta', help='')
parser.add_argument('--inf_sched_alpha', type=float, default=1, help='Alpha parameter of beta distribution for t sched')
parser.add_argument('--inf_sched_beta', type=float, default=1, help='Beta parameter of beta distribution for t sched')
parser.add_argument('--actual_steps', type=int, default=None, help='Number of denoising steps that are actually performed')
parser.add_argument('--keep_local_structures', action='store_true', default=False, help='Keeps the local structure when specifying an input with 3D coordinates instead of generating them with RDKit')
parser.add_argument('--skip_existing', action='store_true', default=False, help='If the output directory already exists, skip the inference')
# This is for low temperature sampling for each individual parameter
# see Illuminating protein space with a programmable generative model, Appendix B
# The default values will probably only work nicely for the model trained presented in the paper
# If you train your own model, you have to fine-tune these parameters on the validation set and pick the best ones
parser.add_argument('--temp_sampling_tr', type=float, default=0.9766350103728372)
parser.add_argument('--temp_psi_tr', type=float, default=1.5102572175711826)
parser.add_argument('--temp_sampling_rot', type=float, default=6.077432837220868)
parser.add_argument('--temp_psi_rot', type=float, default=0.8141168207563049)
parser.add_argument('--temp_sampling_tor', type=float, default=6.761568162335063)
parser.add_argument('--temp_psi_tor', type=float, default=0.7661845361370018)
parser.add_argument('--temp_sampling_sc_tor', type=float, default=1.4487910576602347)
parser.add_argument('--temp_psi_sc_tor', type=float, default=1.339614553802453)
parser.add_argument('--temp_sigma_data', type=float, default=0.48884149503636976)
return parser
@ensure_device
def infer_single_complex(idx: int, protein_ligand_info_row: Mapping, model: torch.nn.Module, args, score_model_args,
filtering_args=None, filtering_model=None, filtering_model_args=None,
filtering_complex_dict=None,
t_schedule=None, tr_schedule=None,
device=None):
orig_complex_graph = protein_ligand_info_row["complex_graph"].to(device)
complex_name = orig_complex_graph.name
spc = args.samples_per_complex
rot_schedule = tr_schedule
tor_schedule = tr_schedule
sidechain_tor_schedule = tr_schedule
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
for m in (model, filtering_model):
if m is not None:
m = m.to(device)
m.eval()
if (filtering_model is not None and not (
filtering_args.use_original_model_cache or filtering_args.transfer_weights) and complex_name
not in filtering_complex_dict.keys()):
print(f"HAPPENING | The filtering dataset did not contain {complex_name}. We are skipping this complex.")
data_list = []
try:
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(spc)]
write_dir = f'{args.out_dir}/index{idx}___{complex_name.replace("/", "-")}'
if os.path.exists(write_dir) and args.skip_existing:
return 0
randomize_position(data_list, score_model_args.no_torsion, args.no_random, score_model_args.tr_sigma_max,
flexible_sidechains=False if args.rigid else score_model_args.flexible_sidechains)
pdb = None
lig = orig_complex_graph.mol
if args.save_visualisation:
visualization_list = []
sidechain_visualization_list = []
mol_pred = copy.deepcopy(lig)
if score_model_args.remove_hs:
mol_pred = RemoveHs(mol_pred)
for graph in data_list:
pdb = PDBFile(mol_pred)
pdb.add(mol_pred, 0, 0)
pdb.add((orig_complex_graph['ligand'].pos + orig_complex_graph.original_center).detach().cpu(), 1, 0)
# Ligand with first noise applied
pdb.add((graph['ligand'].pos + graph.original_center).detach().cpu(), part=1, order=1)
visualization_list.append(pdb)
if not args.rigid and score_model_args.flexible_sidechains:
animation = [orig_complex_graph["atom"].pos + orig_complex_graph.original_center,
orig_complex_graph["atom"].pos + orig_complex_graph.original_center,
graph["atom"].pos + graph.original_center]
sidechain_visualization_list.append(animation)
else:
visualization_list = None
sidechain_visualization_list = None
if filtering_model is not None and not (
filtering_args.use_original_model_cache or filtering_args.transfer_weights):
filtering_data_list = [copy.deepcopy(filtering_complex_dict[complex_name]) for _ in range(spc)]
else:
filtering_data_list = None
data_list, confidence = sampling(data_list=data_list, model=model,
inference_steps=args.actual_steps if args.actual_steps is not None else args.inference_steps,
tr_schedule=tr_schedule, rot_schedule=rot_schedule,
tor_schedule=tor_schedule, sidechain_tor_schedule=sidechain_tor_schedule,
t_schedule=t_schedule,
t_to_sigma=t_to_sigma, model_args=score_model_args,
confidence_model=filtering_model,
device=device,
visualization_list=visualization_list,
sidechain_visualization_list=sidechain_visualization_list,
no_random=args.no_random,
ode=args.ode, filtering_data_list=filtering_data_list,
filtering_model_args=filtering_model_args,
asyncronous_noise_schedule=score_model_args.asyncronous_noise_schedule,
batch_size=args.batch_size, no_final_step_noise=args.no_final_step_noise,
temp_sampling=[args.temp_sampling_tr, args.temp_sampling_rot,
args.temp_sampling_tor, args.temp_sampling_sc_tor],
temp_psi=[args.temp_psi_tr, args.temp_psi_rot, args.temp_psi_tor,
args.temp_psi_sc_tor],
flexible_sidechains=False if args.rigid else score_model_args.flexible_sidechains)
ligand_pos = np.asarray(
[complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy() for
complex_graph in data_list])
atom_pos = np.asarray(
[complex_graph['atom'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy() for
complex_graph in data_list])
rec_struc = parse_pdb_from_path(protein_ligand_info_row["experimental_protein"])
# Similarly as in pdb preprocess, we sort the atoms by the name and put hydrogens at the end
for res in rec_struc.get_residues():
res.child_list.sort(key=lambda atom: PDBBind.order_atoms_in_residue(res, atom))
res.child_list = [atom for atom in res.child_list if
not score_model_args.remove_hs or atom.element != 'H']
if confidence is not None and isinstance(filtering_args.rmsd_classification_cutoff, list):
confidence = confidence[:, 0]
if confidence is not None:
confidence = confidence.cpu().numpy()
re_order = np.argsort(confidence)[::-1]
confidence = confidence[re_order]
ligand_pos = ligand_pos[re_order]
atom_pos = atom_pos[re_order]
os.makedirs(write_dir, exist_ok=True)
ligand_path = None
for rank, pos in enumerate(ligand_pos):
mol_pred = copy.deepcopy(lig)
if score_model_args.remove_hs: mol_pred = RemoveHs(mol_pred)
if rank == 0:
ligand_path = os.path.join(write_dir, f'rank{rank + 1}.sdf')
write_mol_with_coords(mol_pred, pos, ligand_path)
write_mol_with_coords(mol_pred, pos,
os.path.join(write_dir, f'rank{rank + 1}_confidence{confidence[rank]:.2f}.sdf'))
# if flexibility is enabled, this will be changed to the predicted flexible protein
protein_path = protein_ligand_info_row['experimental_protein']
if not args.rigid and score_model_args.flexible_sidechains:
for rank, pos in enumerate(atom_pos):
out = SidechainPDBFile(copy.deepcopy(rec_struc), data_list[rank]['flexResidues'], [atom_pos[rank]])
if rank == 0:
protein_path = os.path.join(write_dir, f'rank{rank + 1}_protein.pdb')
out.write(protein_path)
out.write(os.path.join(write_dir, f'rank{rank + 1}_confidence{confidence[rank]:.2f}_protein.pdb'))
if args.relax:
if ligand_path is None:
raise ValueError("The ligand path is not set. This should not happen.")
if protein_path is None:
raise ValueError("The protein path is not set. This should not happen.")
opt = optimize_ligand_in_pocket(
protein_file=Path(protein_path),
ligand_file=Path(ligand_path),
output_file=Path(ligand_path).with_name('rank1_relaxed.sdf'),
temp_base_dir=args.cache_path,
add_solvent=False,
name=orig_complex_graph.name,
)
energy_before = opt["energy_before"].value_in_unit(megajoule / mole)
energy_after = opt["energy_after"].value_in_unit(megajoule / mole)
print(
f"{Path(ligand_path)} has been relaxed with protein {Path(protein_path)}, "
+ f"E_start: {energy_before:.2f} MJ/mol, "
+ f"E_end: {energy_after:.2f} MJ/mol, "
+ f"ΔE: {energy_after - energy_before:.2f} MJ/mol"
)
if args.save_visualisation:
if confidence is not None:
for rank, batch_idx in enumerate(re_order):
visualization_list[batch_idx].write(os.path.join(write_dir, f'rank{rank + 1}_reverseprocess.pdb'))
else:
for rank, batch_idx in enumerate(ligand_pos):
visualization_list[batch_idx].write(os.path.join(write_dir, f'rank{rank + 1}_reverseprocess.pdb'))
if not args.rigid and score_model_args.flexible_sidechains:
for rank, batch_idx in enumerate(re_order):
pdbWriter = SidechainPDBFile(copy.deepcopy(rec_struc), data_list[rank]['flexResidues'],
sidechain_visualization_list[rank])
pdbWriter.write(os.path.join(os.path.join(write_dir, f'rank{rank + 1}_reverseprocess_protein.pdb')))
except Exception as e:
print("Failed on", complex_name, type(e))
print(e)
stack_trace = traceback.format_exc()
print(stack_trace)
return 0
finally:
del data_list
return +1
@ensure_device
def infer_multiple_complexes(protein_ligand_df, *args, **kwargs):
count_succeeded = 0
num_input = protein_ligand_df.shape[0]
with tqdm(total=num_input, desc="Docking inference") as pbar:
for idx, protein_ligand_info_row in protein_ligand_df.iterrows():
complex_name = protein_ligand_info_row["complex_name"]
pbar.set_postfix_str(s=f"Row {idx}, complex {complex_name}", refresh=True)
count_succeeded += infer_single_complex(idx, protein_ligand_info_row, *args, **kwargs)
pbar.update()
return count_succeeded
def main(args):
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
os.makedirs(args.out_dir, exist_ok=True)
if args.model_dir is None or args.filtering_dir is None:
base_model_dir = os.path.join(args.model_cache_dir, args.tag)
os.makedirs(base_model_dir, exist_ok=True)
if args.model_dir is None:
logging.debug(f'--model_dir is not set. Using tag: {args.tag}')
args.model_dir = download_and_extract(f'{REPOSITORY_URL}/releases/download/{args.tag}/score_model.zip', base_model_dir, 'score_model')
if args.filtering_model_dir is None:
logging.debug(f'--filtering_model_dir is not set. Using tag: {args.tag}')
args.filtering_model_dir = download_and_extract(f'{REPOSITORY_URL}/releases/download/{args.tag}/confidence_model.zip', base_model_dir, 'confidence_model')
with open(f'{args.model_dir}/model_parameters.yml') as f:
score_model_args = Namespace(**yaml.full_load(f))
with open(f'{args.filtering_model_dir}/model_parameters.yml') as f:
filtering_args = Namespace(**yaml.full_load(f))
if args.protein_ligand_csv is not None:
protein_ligand_df = load_protein_ligand_df(args.protein_ligand_csv, strict=False)
elif args.protein_path is not None:
# Turn single entries into a one-row dataframe
df = pd.DataFrame({'complex_name': [args.complex_name],
'experimental_protein': [args.protein_path],
'ligand': [args.ligand],
'pocket_center_x': [args.pocket_center_x],
'pocket_center_y': [args.pocket_center_y],
'pocket_center_z': [args.pocket_center_z],
'flexible_sidechains': [args.flexible_sidechains]})
protein_ligand_df = load_protein_ligand_df(None, df=df)
else:
raise ValueError('Either --protein_ligand_csv or --protein_path has to be specified')
if "computational_protein" in protein_ligand_df.columns:
# Don't use computational protein for inference
print("WARN: Dropping the column 'computational_protein' from the dataframe."
"This column is only used during training and will be ignored during inference.")
protein_ligand_df.drop(columns=["computational_protein"], inplace=True)
device = get_default_device()
print(f"DiffDock-Pocket default device: {device}")
os.makedirs(args.cache_path, exist_ok=True)
with tempfile.TemporaryDirectory(dir=args.cache_path) as dataset_cache:
dataset_cache = os.path.join(dataset_cache, 'testset')
test_dataset = PDBBind(transform=None,
protein_ligand_df=protein_ligand_df,
chain_cutoff=np.inf,
receptor_radius=score_model_args.receptor_radius,
cache_path=dataset_cache,
remove_hs=score_model_args.remove_hs,
max_lig_size=None,
c_alpha_max_neighbors=score_model_args.c_alpha_max_neighbors,
matching=False,
keep_original=False,
conformer_match_sidechains=False,
use_original_conformer_fallback=True,
popsize=score_model_args.matching_popsize,
maxiter=score_model_args.matching_maxiter,
all_atoms=score_model_args.all_atoms,
require_ligand=True,
num_workers=args.num_workers,
keep_local_structures=args.keep_local_structures,
pocket_reduction=score_model_args.pocket_reduction,
pocket_buffer=score_model_args.pocket_buffer,
pocket_cutoff=score_model_args.pocket_cutoff,
pocket_reduction_mode=score_model_args.pocket_reduction_mode,
flexible_sidechains=False if args.rigid else score_model_args.flexible_sidechains,
flexdist=score_model_args.flexdist,
flexdist_distance_metric=score_model_args.flexdist_distance_metric,
fixed_knn_radius_graph=not score_model_args.not_fixed_knn_radius_graph,
knn_only_graph=not score_model_args.not_knn_only_graph,
include_miscellaneous_atoms=score_model_args.include_miscellaneous_atoms,
use_old_wrong_embedding_order=score_model_args.use_old_wrong_embedding_order)
# test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
filtering_test_dataset = filtering_complex_dict = None
if args.filtering_model_dir is not None:
if not (filtering_args.use_original_model_cache or filtering_args.transfer_weights): # if the filtering model uses the same type of data as the original model then we do not need this dataset and can just use the complexes
print('HAPPENING | filtering model uses different type of graphs than the score model. Loading (or creating if not existing) the data for the filtering model now.')
filtering_test_dataset = PDBBind(transform=None,
protein_ligand_df=protein_ligand_df,
chain_cutoff=np.inf,
receptor_radius=filtering_args.receptor_radius,
cache_path=dataset_cache,
remove_hs=filtering_args.remove_hs,
max_lig_size=None,
c_alpha_max_neighbors=filtering_args.c_alpha_max_neighbors,
matching=False,
keep_original=False,
conformer_match_sidechains=False,
use_original_conformer_fallback=True,
popsize=filtering_args.matching_popsize,
maxiter=filtering_args.matching_maxiter,
all_atoms=filtering_args.all_atoms,
require_ligand=True,
num_workers=args.num_workers,
keep_local_structures=args.keep_local_structures,
pocket_reduction=filtering_args.pocket_reduction,
pocket_buffer=filtering_args.pocket_buffer,
pocket_cutoff=filtering_args.pocket_cutoff,
pocket_reduction_mode=filtering_args.pocket_reduction_mode,
flexible_sidechains=False if args.rigid else filtering_args.flexible_sidechains,
flexdist=filtering_args.flexdist,
flexdist_distance_metric=filtering_args.flexdist_distance_metric,
fixed_knn_radius_graph=not filtering_args.not_fixed_knn_radius_graph,
knn_only_graph=not filtering_args.not_knn_only_graph,
include_miscellaneous_atoms=filtering_args.include_miscellaneous_atoms,
use_old_wrong_embedding_order=filtering_args.use_old_wrong_embedding_order)
filtering_complex_dict = {d.name: d for d in filtering_test_dataset}
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True)
state_dict = torch.load(f'{args.model_dir}/{args.ckpt}', map_location=device)
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
if args.filtering_model_dir is not None:
if filtering_args.transfer_weights:
with open(f'{filtering_args.original_model_dir}/model_parameters.yml') as f:
filtering_model_args = Namespace(**yaml.full_load(f))
else:
filtering_model_args = filtering_args
filtering_model = get_model(filtering_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True, confidence_mode=True)
state_dict = torch.load(f'{args.filtering_model_dir}/{args.filtering_ckpt}', map_location=torch.device('cpu'))
filtering_model.load_state_dict(state_dict, strict=True)
filtering_model = filtering_model.to(device)
filtering_model.eval()
else:
filtering_model = None
filtering_args = None
filtering_model_args = None
t_max = 1
tr_schedule = get_t_schedule(sigma_schedule=args.sigma_schedule, inference_steps=args.inference_steps,
inf_sched_alpha=args.inf_sched_alpha, inf_sched_beta=args.inf_sched_beta,
t_max=t_max)
t_schedule = None
print('common tr schedule', tr_schedule)
failures, skipped = 0, 0
print('Size of test dataset: ', len(test_dataset))
devices = get_available_devices(max_devices=args.num_workers)
num_processes = len(devices)
chunks = np.array_split(test_dataset.protein_ligand_df, num_processes)
process_chunk = functools.partial(infer_multiple_complexes, model=model, args=args,
score_model_args=score_model_args,
filtering_args=filtering_args, filtering_model=filtering_model,
filtering_model_args=filtering_model_args,
filtering_complex_dict=filtering_complex_dict,
t_schedule=t_schedule, tr_schedule=tr_schedule)
if num_processes > 1:
print(f"Starting {num_processes} processes.")
with torch.multiprocessing.Pool(processes=num_processes) as pool:
a_results = []
for device, chunk in zip(devices, chunks):
print(f"Starting process on device {device}")
async_result = pool.apply_async(process_chunk, (chunk,), {"device": device})
a_results.append(async_result)
del test_dataset.protein_ligand_df, test_dataset, chunks, chunk
pool.close()
pool.join()
print(f"Completed inferences")
else:
num_inferences = process_chunk(test_dataset.protein_ligand_df, device=device)
print(f"Completed {num_inferences} / {len(test_dataset)} inferences")
print(f'Results are in {args.out_dir}')
if __name__ == "__main__":
mp_method = "spawn"
sharing_strategy = "file_system"
logging.debug(f"Torch multiprocessing method: {mp_method}. Sharing strategy: {sharing_strategy}")
torch.multiprocessing.set_start_method(mp_method)
torch.multiprocessing.set_sharing_strategy(sharing_strategy)
parser = _get_parser()
_args = parser.parse_args()
with torch.no_grad():
main(_args)