-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLPool.h
295 lines (174 loc) · 5.69 KB
/
LPool.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#ifndef POOLLAYER_H
#define POOLLAYER_H
#include "Layer.h"
#include <cmath>
class LPool : public Layer {
private:
//Properties
int p_size;
//Activation matrix
Tensor activation;
//Gradients
Tensor dCdX;
Tensor delta;
//Threading
std::vector<bool > thread_status;
std::vector<bool > thread_status_fb;
public:
//Constructor
LPool( int in_dim, int in_rows, int in_cols, int p_size ) {
//Set dimensions
this->in_dim = in_dim;
this->out_dim = in_dim;
this->in_rows = in_rows;
this->in_cols = in_cols;
this->p_size = p_size;
out_rows = floor(in_rows / p_size);
out_cols = floor(in_cols / p_size);
//Redimension tensors
in.resize(in_dim, in_rows, in_cols);
out.resize(in_dim, out_rows, out_cols);
activation.resize(in_dim, in_rows, in_cols);
delta.resize(in_dim, out_rows, out_cols);
dCdX.resize(in_dim, in_rows, in_cols);
//Threading
thread_status.resize(in_dim);
thread_status_fb.resize(in_dim);
}
//Properties
char getType() { return 'p'; }
//Functions
//Threaded feedforward version, d specifies which dimension/feature-map is computed
void feedforward_dim( int d ) {
thread_status[d] = true;
int outx = 0;
for (int m = 0; m < in_rows - p_size + 1; m += p_size) {
int outy = 0;
for (int n = 0; n < in_cols - p_size +1; n += p_size) {
double max = -99999.0; int maxx = 0; int maxy = 0;
for (int i = 0; i < p_size; i++) {
for (int j = 0; j < p_size; j++) {
if (in(d, m + i, n + j) > max) {
max = in(d, m + i, n + j);
maxx = m + i;
maxy = n + j;
}
}
}
out(d, outx, outy) = max;
activation(d, maxx, maxy) = 1;
outy += 1;
}
outx += 1;
}
thread_status[d] = false;
return;
}
Tensor feedforward( Tensor in ) {
this->in = in.copy();
activation.set(0);
//Threading is only computationaly beneficial for larger dimensions
if (in_dim > 1 && (in_rows * in_cols > 1024)) {
//Create and start threads
std::thread t[in_dim];
for (int d = 0; d < in_dim; d++)
t[d] = std::thread([=] { feedforward_dim(d); });
//Check if all threads are completed
bool active = true;
while (active) {
active = false;
for (int d = 0; d < in_dim; d++)
if (thread_status[d])
active = true;
}
//Join threads to main thread
for (int d = 0; d < in_dim; d++)
t[d].join();
} else {
for (int d = 0; d < in_dim; d++) {
int outx = 0;
for (int m = 0; m < in_rows - p_size + 1; m += p_size) {
int outy = 0;
for (int n = 0; n < in_cols - p_size +1; n += p_size) {
double max = -99999.0; int maxx = 0; int maxy = 0;
for (int i = 0; i < p_size; i++) {
for (int j = 0; j < p_size; j++) {
if (in(d, m + i, n + j) > max) {
max = in(d, m + i, n + j);
maxx = m + i;
maxy = n + j;
}
}
}
out(d, outx, outy) = max;
activation(d, maxx, maxy) = 1;
outy += 1;
}
outx += 1;
}
}
}
return out;
}
void feedback_dim( int d ) {
thread_status_fb[d] = true;
int outx = 0;
for (int m = 0; m < in_rows - p_size + 1; m += p_size) {
int outy = 0;
for (int n = 0; n < in_cols - p_size + 1; n += p_size) {
for (int i = 0; i < p_size; i++) {
for (int j = 0; j < p_size; j++) {
if (abs(activation(d, m + i, n + j) - 1) < 1E-3)
dCdX(d, m + i, n +j) = delta(d, outx, outy);
}
}
outy += 1;
}
outx += 1;
}
thread_status_fb[d] = false;
return;
}
Tensor feedback( Tensor delta ) {
this->delta = delta.copy();
dCdX.set(0);
//Threading is only computationaly beneficial for larger dimensions
if (out_dim > 1 && (out_rows * out_cols >= 1024 )) {
//Create and start threads
std::thread t_fb[in_dim];
for (int d = 0; d < in_dim; d++)
t_fb[d] = std::thread([=] { feedback_dim(d); });
//Check if all threads are completed
bool active = true;
while (active) {
active = false;
for (int d = 0; d < in_dim; d++)
if (thread_status_fb[d])
active = true;
}
//Join threads to main thread
for (int d = 0; d < in_dim; d++)
t_fb[d].join();
} else {
for (int d = 0; d < in_dim; d++) {
int outx = 0;
for (int m = 0; m < in_rows - p_size + 1; m += p_size) {
int outy = 0;
for (int n = 0; n < in_cols - p_size + 1; n += p_size) {
for (int i = 0; i < p_size; i++) {
for (int j = 0; j < p_size; j++) {
if (abs(activation(d, m + i, n + j) - 1) < 1E-3)
dCdX(d, m + i, n +j) = delta(d, outx, outy);
}
}
outy += 1;
}
outx += 1;
}
}
}
return dCdX;
}
void updateweights( float rate, float mom ) { return; }
};
#endif