Skip to content

Latest commit

 

History

History
37 lines (34 loc) · 1.17 KB

File metadata and controls

37 lines (34 loc) · 1.17 KB

Machine Learning Algorithms in a Nutshell

Requirements

  • pandas
  • sklearn
  • matplotlib
  • numpy
  • pickle

Topics covered are as follows:

  • Logistic regeression
  • LDA Classification
  • KNN Classification
  • Gaussian Naive Bayes Classification
  • Classification and Regression Test Classification
  • Support Vector Machines Classification
  • Linear Regression
  • Lasso Regression
  • ElasticNet Regression
  • KNN Regression
  • Decision Tree Regression
  • Support Veector Machines Regression
  • Comparing the Algorithms
  • Create a pipeline that standardizes the data then creates a model
  • Create a pipeline that extracts features from the data then creates a model
  • Bagged Decision Trees for Classification
  • Random Forest Classification
  • Extra Trees Classification
  • AdaBoost Classification
  • Stochastic Gradient Boosting Classification
  • Voting Ensemble for Classification
  • Grid Search for Algorithm Tuning
  • Randomized for Algorithm Tuning
  • Save Model Using Pickle
  • Save Model Using joblib

Dataset used: Pima Indians Diabetes Database and Boston Housing Dataset