-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathpreprocess_training.py
100 lines (75 loc) · 3.68 KB
/
preprocess_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import time
import argparse
import numpy as np
import pickle
# Custom Classes
import preprocess
def save_pickle(variable, fileName):
with open(fileName, 'wb') as f:
pickle.dump(variable, f)
def load_pickle_file(fileName):
with open(fileName, 'rb') as f:
return pickle.load(f)
def preprocess_for_training(train_A_dir, train_B_dir, cache_folder):
num_mcep = 24
sampling_rate = 16000
frame_period = 5.0
n_frames = 128
print("Starting to prepocess data.......")
start_time = time.time()
wavs_A = preprocess.load_wavs(wav_dir=train_A_dir, sr=sampling_rate)
wavs_B = preprocess.load_wavs(wav_dir=train_B_dir, sr=sampling_rate)
f0s_A, timeaxes_A, sps_A, aps_A, coded_sps_A = preprocess.world_encode_data(
wave=wavs_A, fs=sampling_rate, frame_period=frame_period, coded_dim=num_mcep)
f0s_B, timeaxes_B, sps_B, aps_B, coded_sps_B = preprocess.world_encode_data(
wave=wavs_B, fs=sampling_rate, frame_period=frame_period, coded_dim=num_mcep)
log_f0s_mean_A, log_f0s_std_A = preprocess.logf0_statistics(f0s=f0s_A)
log_f0s_mean_B, log_f0s_std_B = preprocess.logf0_statistics(f0s=f0s_B)
print("Log Pitch A")
print("Mean: {:.4f}, Std: {:.4f}".format(log_f0s_mean_A, log_f0s_std_A))
print("Log Pitch B")
print("Mean: {:.4f}, Std: {:.4f}".format(log_f0s_mean_B, log_f0s_std_B))
coded_sps_A_transposed = preprocess.transpose_in_list(lst=coded_sps_A)
coded_sps_B_transposed = preprocess.transpose_in_list(lst=coded_sps_B)
coded_sps_A_norm, coded_sps_A_mean, coded_sps_A_std = preprocess.coded_sps_normalization_fit_transform(
coded_sps=coded_sps_A_transposed)
coded_sps_B_norm, coded_sps_B_mean, coded_sps_B_std = preprocess.coded_sps_normalization_fit_transform(
coded_sps=coded_sps_B_transposed)
if not os.path.exists(cache_folder):
os.makedirs(cache_folder)
np.savez(os.path.join(cache_folder, 'logf0s_normalization.npz'),
mean_A=log_f0s_mean_A,
std_A=log_f0s_std_A,
mean_B=log_f0s_mean_B,
std_B=log_f0s_std_B)
np.savez(os.path.join(cache_folder, 'mcep_normalization.npz'),
mean_A=coded_sps_A_mean,
std_A=coded_sps_A_std,
mean_B=coded_sps_B_mean,
std_B=coded_sps_B_std)
save_pickle(variable=coded_sps_A_norm,
fileName=os.path.join(cache_folder, "coded_sps_A_norm.pickle"))
save_pickle(variable=coded_sps_B_norm,
fileName=os.path.join(cache_folder, "coded_sps_B_norm.pickle"))
end_time = time.time()
print("Preprocessing finsihed!! see your directory ../cache for cached preprocessed data")
print("Time taken for preprocessing {:.4f} seconds".format(
end_time - start_time))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Prepare data for training Cycle GAN using PyTorch')
train_A_dir_default = '../data/vcc2016_training/SF1/'
train_B_dir_default = '../data/vcc2016_training/TF2/'
cache_folder_default = '../cache_check/'
parser.add_argument('--train_A_dir', type=str,
help="Directory for source voice sample", default=train_A_dir_default)
parser.add_argument('--train_B_dir', type=str,
help="Directory for target voice sample", default=train_B_dir_default)
parser.add_argument('--cache_folder', type=str,
help="Store preprocessed data in cache folders", default=cache_folder_default)
argv = parser.parse_args()
train_A_dir = argv.train_A_dir
train_B_dir = argv.train_B_dir
cache_folder = argv.cache_folder
preprocess_for_training(train_A_dir, train_B_dir, cache_folder)