-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathRPPG.cpp
666 lines (541 loc) · 19.9 KB
/
RPPG.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
//
// RPPG.cpp
// Heartbeat
//
// Created by Philipp Rouast on 7/07/2016.
// Copyright © 2016 Philipp Roüast. All rights reserved.
//
#include "RPPG.hpp"
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/video.hpp>
#include "opencv.hpp"
using namespace cv;
using namespace dnn;
using namespace std;
#define LOW_BPM 42
#define HIGH_BPM 240
#define REL_MIN_FACE_SIZE 0.4
#define SEC_PER_MIN 60
#define MAX_CORNERS 10
#define MIN_CORNERS 5
#define QUALITY_LEVEL 0.01
#define MIN_DISTANCE 25
bool RPPG::load(const rPPGAlgorithm rPPGAlg, const faceDetAlgorithm faceDetAlg,
const int width, const int height, const double timeBase, const int downsample,
const double samplingFrequency, const double rescanFrequency,
const int minSignalSize, const int maxSignalSize,
const string &logPath, const string &haarPath,
const string &dnnProtoPath, const string &dnnModelPath,
const bool log, const bool gui) {
this->rPPGAlg = rPPGAlg;
this->faceDetAlg = faceDetAlg;
this->guiMode = gui;
this->lastSamplingTime = 0;
this->logMode = log;
this->minFaceSize = Size(min(width, height) * REL_MIN_FACE_SIZE, min(width, height) * REL_MIN_FACE_SIZE);
this->maxSignalSize = maxSignalSize;
this->minSignalSize = minSignalSize;
this->rescanFlag = false;
this->rescanFrequency = rescanFrequency;
this->samplingFrequency = samplingFrequency;
this->timeBase = timeBase;
// Load classifier
switch (faceDetAlg) {
case haar:
haarClassifier.load(haarPath);
break;
case deep:
dnnClassifier = readNetFromCaffe(dnnProtoPath, dnnModelPath);
break;
}
// Setting up logfilepath
ostringstream path_1;
path_1 << logPath << "_rppg=" << rPPGAlg << "_facedet=" << faceDetAlg << "_min=" << minSignalSize << "_max=" << maxSignalSize << "_ds=" << downsample;
this->logfilepath = path_1.str();
// Logging bpm according to sampling frequency
std::ostringstream path_2;
path_2 << logfilepath << "_bpm.csv";
logfile.open(path_2.str());
logfile << "time;face_valid;mean;min;max\n";
logfile.flush();
// Logging bpm detailed
std::ostringstream path_3;
path_3 << logfilepath << "_bpmAll.csv";
logfileDetailed.open(path_3.str());
logfileDetailed << "time;face_valid;bpm\n";
logfileDetailed.flush();
return true;
}
void RPPG::exit() {
logfile.close();
logfileDetailed.close();
}
void RPPG::processFrame(Mat &frameRGB, Mat &frameGray, int time) {
// Set time
this->time = time;
if (!faceValid) {
cout << "Not valid, finding a new face" << endl;
lastScanTime = time;
detectFace(frameRGB, frameGray);
} else if ((time - lastScanTime) * timeBase >= 1/rescanFrequency) {
cout << "Valid, but rescanning face" << endl;
lastScanTime = time;
detectFace(frameRGB, frameGray);
rescanFlag = true;
} else {
cout << "Tracking face" << endl;
trackFace(frameGray);
}
if (faceValid) {
// Update fps
fps = getFps(t, timeBase);
// Remove old values from raw signal buffer
while (s.rows > fps * maxSignalSize) {
push(s);
push(t);
push(re);
}
assert(s.rows == t.rows && s.rows == re.rows);
// New values
Scalar means = mean(frameRGB, mask);
// Add new values to raw signal buffer
double values[] = {means(0), means(1), means(2)};
s.push_back(Mat(1, 3, CV_64F, values));
t.push_back(time);
// Save rescan flag
re.push_back(rescanFlag);
// Update fps
fps = getFps(t, timeBase);
// Update band spectrum limits
low = (int)(s.rows * LOW_BPM / SEC_PER_MIN / fps);
high = (int)(s.rows * HIGH_BPM / SEC_PER_MIN / fps) + 1;
// If valid signal is large enough: estimate
if (s.rows >= fps * minSignalSize) {
// Filtering
switch (rPPGAlg) {
case g:
extractSignal_g();
break;
case pca:
extractSignal_pca();
break;
case xminay:
extractSignal_xminay();
break;
}
// HR estimation
estimateHeartrate();
// Log
log();
}
if (guiMode) {
draw(frameRGB);
}
}
rescanFlag = false;
frameGray.copyTo(lastFrameGray);
}
void RPPG::detectFace(Mat &frameRGB, Mat &frameGray) {
cout << "Scanning for faces…" << endl;
vector<Rect> boxes = {};
switch (faceDetAlg) {
case haar:
// Detect faces with Haar classifier
haarClassifier.detectMultiScale(frameGray, boxes, 1.1, 2, CASCADE_SCALE_IMAGE, minFaceSize);
break;
case deep:
// Detect faces with DNN
Mat resize300;
cv::resize(frameRGB, resize300, Size(300, 300));
Mat blob = blobFromImage(resize300, 1.0, Size(300, 300), Scalar(104.0, 177.0, 123.0));
dnnClassifier.setInput(blob);
Mat detection = dnnClassifier.forward();
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
float confidenceThreshold = 0.5;
for (int i = 0; i < detectionMat.rows; i++) {
float confidence = detectionMat.at<float>(i, 2);
if (confidence > confidenceThreshold) {
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frameRGB.cols);
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frameRGB.rows);
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frameRGB.cols);
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frameRGB.rows);
Rect object((int)xLeftBottom, (int)yLeftBottom,
(int)(xRightTop - xLeftBottom),
(int)(yRightTop - yLeftBottom));
boxes.push_back(object);
}
}
break;
}
if (boxes.size() > 0) {
cout << "Found a face" << endl;
setNearestBox(boxes);
detectCorners(frameGray);
updateROI();
updateMask(frameGray);
faceValid = true;
} else {
cout << "Found no face" << endl;
invalidateFace();
}
}
void RPPG::setNearestBox(vector<Rect> boxes) {
int index = 0;
Point p = box.tl() - boxes.at(0).tl();
int min = p.x * p.x + p.y * p.y;
for (int i = 1; i < boxes.size(); i++) {
p = box.tl() - boxes.at(i).tl();
int d = p.x * p.x + p.y * p.y;
if (d < min) {
min = d;
index = i;
}
}
box = boxes.at(index);
}
void RPPG::detectCorners(Mat &frameGray) {
// Define tracking region
Mat trackingRegion = Mat::zeros(frameGray.rows, frameGray.cols, CV_8UC1);
Point points[1][4];
points[0][0] = Point(box.tl().x + 0.22 * box.width,
box.tl().y + 0.21 * box.height);
points[0][1] = Point(box.tl().x + 0.78 * box.width,
box.tl().y + 0.21 * box.height);
points[0][2] = Point(box.tl().x + 0.70 * box.width,
box.tl().y + 0.65 * box.height);
points[0][3] = Point(box.tl().x + 0.30 * box.width,
box.tl().y + 0.65 * box.height);
const Point *pts[1] = {points[0]};
int npts[] = {4};
fillPoly(trackingRegion, pts, npts, 1, WHITE);
// Apply corner detection
goodFeaturesToTrack(frameGray,
corners,
MAX_CORNERS,
QUALITY_LEVEL,
MIN_DISTANCE,
trackingRegion,
3,
false,
0.04);
}
void RPPG::trackFace(Mat &frameGray) {
// Make sure enough corners are available
if (corners.size() < MIN_CORNERS) {
detectCorners(frameGray);
}
Contour2f corners_1;
Contour2f corners_0;
vector<uchar> cornersFound_1;
vector<uchar> cornersFound_0;
Mat err;
// Track face features with Kanade-Lucas-Tomasi (KLT) algorithm
calcOpticalFlowPyrLK(lastFrameGray, frameGray, corners, corners_1, cornersFound_1, err);
// Backtrack once to make it more robust
calcOpticalFlowPyrLK(frameGray, lastFrameGray, corners_1, corners_0, cornersFound_0, err);
// Exclude no-good corners
Contour2f corners_1v;
Contour2f corners_0v;
for (size_t j = 0; j < corners.size(); j++) {
if (cornersFound_1[j] && cornersFound_0[j]
&& norm(corners[j]-corners_0[j]) < 2) {
corners_0v.push_back(corners_0[j]);
corners_1v.push_back(corners_1[j]);
} else {
cout << "Mis!" << std::endl;
}
}
if (corners_1v.size() >= MIN_CORNERS) {
// Save updated features
corners = corners_1v;
// Estimate affine transform
Mat transform = estimateRigidTransform(corners_0v, corners_1v, false);
if (transform.total() > 0) {
// Update box
Contour2f boxCoords;
boxCoords.push_back(box.tl());
boxCoords.push_back(box.br());
Contour2f transformedBoxCoords;
cv::transform(boxCoords, transformedBoxCoords, transform);
box = Rect(transformedBoxCoords[0], transformedBoxCoords[1]);
// Update roi
Contour2f roiCoords;
roiCoords.push_back(roi.tl());
roiCoords.push_back(roi.br());
Contour2f transformedRoiCoords;
cv::transform(roiCoords, transformedRoiCoords, transform);
roi = Rect(transformedRoiCoords[0], transformedRoiCoords[1]);
updateMask(frameGray);
}
} else {
cout << "Tracking failed! Not enough corners left." << endl;
invalidateFace();
}
}
void RPPG::updateROI() {
this->roi = Rect(Point(box.tl().x + 0.3 * box.width, box.tl().y + 0.1 * box.height),
Point(box.tl().x + 0.7 * box.width, box.tl().y + 0.25 * box.height));
}
void RPPG::updateMask(Mat &frameGray) {
cout << "Update mask" << endl;
mask = Mat::zeros(frameGray.size(), frameGray.type());
rectangle(mask, this->roi, WHITE, FILLED);
}
void RPPG::invalidateFace() {
s = Mat1d();
s_f = Mat1d();
t = Mat1d();
re = Mat1b();
powerSpectrum = Mat1d();
faceValid = false;
}
void RPPG::extractSignal_g() {
// Denoise
Mat s_den = Mat(s.rows, 1, CV_64F);
denoise(s.col(1), re, s_den);
// Normalise
normalization(s_den, s_den);
// Detrend
Mat s_det = Mat(s_den.rows, s_den.cols, CV_64F);
detrend(s_den, s_det, fps);
// Moving average
Mat s_mav = Mat(s_det.rows, s_det.cols, CV_64F);
movingAverage(s_det, s_mav, 3, fmax(floor(fps/6), 2));
s_mav.copyTo(s_f);
// Logging
if (logMode) {
std::ofstream log;
std::ostringstream filepath;
filepath << logfilepath << "_signal_" << time << ".csv";
log.open(filepath.str());
log << "re;g;g_den;g_det;g_mav\n";
for (int i = 0; i < s.rows; i++) {
log << re.at<bool>(i, 0) << ";";
log << s.at<double>(i, 1) << ";";
log << s_den.at<double>(i, 0) << ";";
log << s_det.at<double>(i, 0) << ";";
log << s_mav.at<double>(i, 0) << "\n";
}
log.close();
}
}
void RPPG::extractSignal_pca() {
// Denoise signals
Mat s_den = Mat(s.rows, s.cols, CV_64F);
denoise(s, re, s_den);
// Normalize signals
normalization(s_den, s_den);
// Detrend
Mat s_det = Mat(s.rows, s.cols, CV_64F);
detrend(s_den, s_det, fps);
// PCA to reduce dimensionality
Mat s_pca = Mat(s.rows, 1, CV_32F);
Mat pc = Mat(s.rows, s.cols, CV_32F);
pcaComponent(s_det, s_pca, pc, low, high);
// Moving average
Mat s_mav = Mat(s.rows, 1, CV_32F);
movingAverage(s_pca, s_mav, 3, fmax(floor(fps/6), 2));
s_mav.copyTo(s_f);
// Logging
if (logMode) {
std::ofstream log;
std::ostringstream filepath;
filepath << logfilepath << "_signal_" << time << ".csv";
log.open(filepath.str());
log << "re;r;g;b;r_den;g_den;b_den;r_det;g_det;b_det;pc1;pc2;pc3;s_pca;s_mav\n";
for (int i = 0; i < s.rows; i++) {
log << re.at<bool>(i, 0) << ";";
log << s.at<double>(i, 0) << ";";
log << s.at<double>(i, 1) << ";";
log << s.at<double>(i, 2) << ";";
log << s_den.at<double>(i, 0) << ";";
log << s_den.at<double>(i, 1) << ";";
log << s_den.at<double>(i, 2) << ";";
log << s_det.at<double>(i, 0) << ";";
log << s_det.at<double>(i, 1) << ";";
log << s_det.at<double>(i, 2) << ";";
log << pc.at<double>(i, 0) << ";";
log << pc.at<double>(i, 1) << ";";
log << pc.at<double>(i, 2) << ";";
log << s_pca.at<double>(i, 0) << ";";
log << s_mav.at<double>(i, 0) << "\n";
}
log.close();
}
}
void RPPG::extractSignal_xminay() {
// Denoise signals
Mat s_den = Mat(s.rows, s.cols, CV_64F);
denoise(s, re, s_den);
// Normalize raw signals
Mat s_n = Mat(s_den.rows, s_den.cols, CV_64F);
normalization(s_den, s_n);
// Calculate X_s signal
Mat x_s = Mat(s.rows, s.cols, CV_64F);
addWeighted(s_n.col(0), 3, s_n.col(1), -2, 0, x_s);
// Calculate Y_s signal
Mat y_s = Mat(s.rows, s.cols, CV_64F);
addWeighted(s_n.col(0), 1.5, s_n.col(1), 1, 0, y_s);
addWeighted(y_s, 1, s_n.col(2), -1.5, 0, y_s);
// Bandpass
Mat x_f = Mat(s.rows, s.cols, CV_32F);
bandpass(x_s, x_f, low, high);
x_f.convertTo(x_f, CV_64F);
Mat y_f = Mat(s.rows, s.cols, CV_32F);
bandpass(y_s, y_f, low, high);
y_f.convertTo(y_f, CV_64F);
// Calculate alpha
Scalar mean_x_f;
Scalar stddev_x_f;
meanStdDev(x_f, mean_x_f, stddev_x_f);
Scalar mean_y_f;
Scalar stddev_y_f;
meanStdDev(y_f, mean_y_f, stddev_y_f);
double alpha = stddev_x_f.val[0]/stddev_y_f.val[0];
// Calculate signal
Mat xminay = Mat(s.rows, 1, CV_64F);
addWeighted(x_f, 1, y_f, -alpha, 0, xminay);
// Moving average
movingAverage(xminay, s_f, 3, fmax(floor(fps/6), 2));
// Logging
if (logMode) {
std::ofstream log;
std::ostringstream filepath;
filepath << logfilepath << "_signal_" << time << ".csv";
log.open(filepath.str());
log << "r;g;b;r_den;g_den;b_den;x_s;y_s;x_f;y_f;s;s_f\n";
for (int i = 0; i < s.rows; i++) {
log << s.at<double>(i, 0) << ";";
log << s.at<double>(i, 1) << ";";
log << s.at<double>(i, 2) << ";";
log << s_den.at<double>(i, 0) << ";";
log << s_den.at<double>(i, 1) << ";";
log << s_den.at<double>(i, 2) << ";";
log << x_s.at<double>(i, 0) << ";";
log << y_s.at<double>(i, 0) << ";";
log << x_f.at<double>(i, 0) << ";";
log << y_f.at<double>(i, 0) << ";";
log << xminay.at<double>(i, 0) << ";";
log << s_f.at<double>(i, 0) << "\n";
}
log.close();
}
}
void RPPG::estimateHeartrate() {
powerSpectrum = cv::Mat(s_f.size(), CV_32F);
timeToFrequency(s_f, powerSpectrum, true);
// band mask
const int total = s_f.rows;
Mat bandMask = Mat::zeros(s_f.size(), CV_8U);
bandMask.rowRange(min(low, total), min(high, total) + 1).setTo(ONE);
if (!powerSpectrum.empty()) {
// grab index of max power spectrum
double min, max;
Point pmin, pmax;
minMaxLoc(powerSpectrum, &min, &max, &pmin, &pmax, bandMask);
// calculate BPM
bpm = pmax.y * fps / total * SEC_PER_MIN;
bpms.push_back(bpm);
cout << "FPS=" << fps << " Vals=" << powerSpectrum.rows << " Peak=" << pmax.y << " BPM=" << bpm << endl;
// Logging
if (logMode) {
std::ofstream log;
std::ostringstream filepath;
filepath << logfilepath << "_estimation_" << time << ".csv";
log.open(filepath.str());
log << "i;powerSpectrum\n";
for (int i = 0; i < powerSpectrum.rows; i++) {
if (low <= i && i <= high) {
log << i << ";";
log << powerSpectrum.at<double>(i, 0) << "\n";
}
}
log.close();
}
}
if ((time - lastSamplingTime) * timeBase >= 1/samplingFrequency) {
lastSamplingTime = time;
cv::sort(bpms, bpms, SORT_EVERY_COLUMN);
// average calculated BPMs since last sampling time
meanBpm = mean(bpms)(0);
minBpm = bpms.at<double>(0, 0);
maxBpm = bpms.at<double>(bpms.rows-1, 0);
std::cout << "meanBPM=" << meanBpm << " minBpm=" << minBpm << " maxBpm=" << maxBpm << std::endl;
bpms.pop_back(bpms.rows);
}
}
void RPPG::log() {
if (lastSamplingTime == time || lastSamplingTime == 0) {
logfile << time << ";";
logfile << faceValid << ";";
logfile << meanBpm << ";";
logfile << minBpm << ";";
logfile << maxBpm << "\n";
logfile.flush();
}
logfileDetailed << time << ";";
logfileDetailed << faceValid << ";";
logfileDetailed << bpm << "\n";
logfileDetailed.flush();
}
void RPPG::draw(cv::Mat &frameRGB) {
// Draw roi
rectangle(frameRGB, roi, GREEN);
// Draw bounding box
rectangle(frameRGB, box, RED);
// Draw signal
if (!s_f.empty() && !powerSpectrum.empty()) {
// Display of signals with fixed dimensions
double displayHeight = box.height/2.0;
double displayWidth = box.width*0.8;
// Draw signal
double vmin, vmax;
Point pmin, pmax;
minMaxLoc(s_f, &vmin, &vmax, &pmin, &pmax);
double heightMult = displayHeight/(vmax - vmin);
double widthMult = displayWidth/(s_f.rows - 1);
double drawAreaTlX = box.tl().x + box.width + 20;
double drawAreaTlY = box.tl().y;
Point p1(drawAreaTlX, drawAreaTlY + (vmax - s_f.at<double>(0, 0))*heightMult);
Point p2;
for (int i = 1; i < s_f.rows; i++) {
p2 = Point(drawAreaTlX + i * widthMult, drawAreaTlY + (vmax - s_f.at<double>(i, 0))*heightMult);
line(frameRGB, p1, p2, RED, 2);
p1 = p2;
}
// Draw powerSpectrum
const int total = s_f.rows;
Mat bandMask = Mat::zeros(s_f.size(), CV_8U);
bandMask.rowRange(min(low, total), min(high, total) + 1).setTo(ONE);
minMaxLoc(powerSpectrum, &vmin, &vmax, &pmin, &pmax, bandMask);
heightMult = displayHeight/(vmax - vmin);
widthMult = displayWidth/(high - low);
drawAreaTlX = box.tl().x + box.width + 20;
drawAreaTlY = box.tl().y + box.height/2.0;
p1 = Point(drawAreaTlX, drawAreaTlY + (vmax - powerSpectrum.at<double>(low, 0))*heightMult);
for (int i = low + 1; i <= high; i++) {
p2 = Point(drawAreaTlX + (i - low) * widthMult, drawAreaTlY + (vmax - powerSpectrum.at<double>(i, 0)) * heightMult);
line(frameRGB, p1, p2, RED, 2);
p1 = p2;
}
}
std::stringstream ss;
// Draw BPM text
if (faceValid) {
ss.precision(3);
ss << meanBpm << " bpm";
putText(frameRGB, ss.str(), Point(box.tl().x, box.tl().y - 10), FONT_HERSHEY_PLAIN, 2, RED, 2);
}
// Draw FPS text
ss.str("");
ss << fps << " fps";
putText(frameRGB, ss.str(), Point(box.tl().x, box.br().y + 40), FONT_HERSHEY_PLAIN, 2, GREEN, 2);
// Draw corners
for (int i = 0; i < corners.size(); i++) {
//circle(frameRGB, corners[i], r, WHITE, -1, 8, 0);
line(frameRGB, Point(corners[i].x-5,corners[i].y), Point(corners[i].x+5,corners[i].y), GREEN, 1);
line(frameRGB, Point(corners[i].x,corners[i].y-5), Point(corners[i].x,corners[i].y+5), GREEN, 1);
}
}