This repository has been archived by the owner on Feb 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils.py
433 lines (331 loc) · 12.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
"""
general utility functions for loading, saving, and manipulating data
"""
import os
import logging
import pprint as pp
import re
import shutil # zipfile formats
import warnings
from datetime import datetime
from os.path import basename, getsize, join
from pathlib import Path
import logging
import pandas as pd
import requests
from natsort import natsorted
from symspellpy import SymSpell
from tqdm.auto import tqdm
import warnings
warnings.filterwarnings(
action="ignore", message=".*the GPL-licensed package `unidecode` is not installed*"
) # cleantext GPL-licensed package reminder is annoying
class DisableLogger:
def __enter__(self):
logging.disable(logging.CRITICAL)
def __exit__(self, exit_type, exit_value, exit_traceback):
logging.disable(logging.NOTSET)
with DisableLogger():
from cleantext import clean
def clear_loggers():
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
def get_timestamp():
return datetime.now().strftime("%b-%d-%Y_t-%H")
def print_spacer(n=1):
"""print_spacer - print a spacer line"""
print("\n -------- " * n)
def remove_trailing_punctuation(text: str):
"""
remove_trailing_punctuation - remove trailing punctuation from a string
Args:
text (str): [string to be cleaned]
Returns:
[str]: [cleaned string]
"""
return text.strip("?!.,;:")
def correct_phrase_load(my_string: str):
"""
correct_phrase_load [basic / unoptimized implementation of SymSpell to correct a string]
Args:
my_string (str): [text to be corrected]
Returns:
str: the corrected string
"""
sym_spell = SymSpell(max_dictionary_edit_distance=2, prefix_length=7)
dictionary_path = (
r"symspell_rsc/frequency_dictionary_en_82_765.txt" # from repo root
)
bigram_path = (
r"symspell_rsc/frequency_bigramdictionary_en_243_342.txt" # from repo root
)
# term_index is the column of the term and count_index is the
# column of the term frequency
sym_spell.load_dictionary(dictionary_path, term_index=0, count_index=1)
sym_spell.load_bigram_dictionary(bigram_path, term_index=0, count_index=2)
# max edit distance per lookup (per single word, not per whole input string)
suggestions = sym_spell.lookup_compound(
clean(my_string), max_edit_distance=2, ignore_non_words=True
)
if len(suggestions) < 1:
return my_string
else:
first_result = suggestions[0]
return first_result._term
def fast_scandir(dirname: str):
"""
fast_scandir [an os.path-based means to return all subfolders in a given filepath]
"""
subfolders = [f.path for f in os.scandir(dirname) if f.is_dir()]
for dirname in list(subfolders):
subfolders.extend(fast_scandir(dirname))
return subfolders # list
def create_folder(directory: str):
os.makedirs(directory, exist_ok=True)
def chunks(lst: list, n: int):
"""
chunks - Yield successive n-sized chunks from lst
Args: lst (list): list to be chunked
n (int): size of chunks
"""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def shorten_list(
list_of_strings: list, max_chars: int = 512, no_blanks=True, verbose=False
):
"""a helper function that iterates through a list backwards, adding to a new list.
When <max_chars> is met, that list entry is not added.
Args:
list_of_strings (list): list of strings to be shortened
max_chars (int, optional): maximum number of characters in a the list in total. Defaults to 512.
no_blanks (bool, optional): if True, blank strings are not added to the new list. Defaults to True.
verbose (bool, optional): if True, print the list of strings before and after the shorten. Defaults to False.
"""
list_of_strings = [
str(x) for x in list_of_strings
] # convert to strings if not already
shortened_list = []
total_len = 0
for i, string in enumerate(list_of_strings[::-1], start=1):
if len(string.strip()) == 0 and no_blanks:
continue
if len(string) + total_len >= max_chars:
logging.info(f"string # {i} puts total over limit, breaking ")
break
total_len += len(string)
shortened_list.insert(0, string)
if len(shortened_list) == 0:
logging.info(f"shortened list with max_chars={max_chars} has no entries")
if verbose:
print(f"total length of list is {total_len} chars")
return shortened_list
def chunky_pandas(my_df, num_chunks: int = 4):
"""
chunky_pandas [split dataframe into `num_chunks` equal chunks, return each inside a list]
Args:
my_df (pd.DataFrame)
num_chunks (int, optional): Defaults to 4.
Returns:
list: a list of dataframes
"""
n = int(len(my_df) // num_chunks)
list_df = [my_df[i : i + n] for i in range(0, my_df.shape[0], n)]
return list_df
def load_dir_files(
directory: str, req_extension=".txt", return_type="list", verbose=False
):
"""
load_dir_files - an os.path based method of returning all files with extension `req_extension` in a given directory and subdirectories
Args:
Returns:
list or dict: an iterable of filepaths or a dict of filepaths and their respective filenames
"""
appr_files = []
# r=root, d=directories, f = files
for r, d, f in os.walk(directory):
for prefile in f:
if prefile.endswith(req_extension):
fullpath = os.path.join(r, prefile)
appr_files.append(fullpath)
appr_files = natsorted(appr_files)
if verbose:
print("A list of files in the {} directory are: \n".format(directory))
if len(appr_files) < 10:
pp.pprint(appr_files)
else:
pp.pprint(appr_files[:10])
print("\n and more. There are a total of {} files".format(len(appr_files)))
if return_type.lower() == "list":
return appr_files
else:
if verbose:
print("returning dictionary")
appr_file_dict = {}
for this_file in appr_files:
appr_file_dict[basename(this_file)] = this_file
return appr_file_dict
def URL_string_filter(text):
"""
URL_string_filter - filter out nonstandard "text" characters
"""
custom_printable = (
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ._"
)
filtered = "".join((filter(lambda i: i in custom_printable, text)))
return filtered
def getFilename_fromCd(cd):
"""getFilename_fromCd - get the filename from a given cd str"""
if not cd:
return None
fname = re.findall("filename=(.+)", cd)
if len(fname) > 0:
output = fname[0]
elif cd.find("/"):
possible_fname = cd.rsplit("/", 1)[1]
output = URL_string_filter(possible_fname)
else:
output = None
return output
def get_zip_URL(
URLtoget: str,
extract_loc: str = None,
file_header: str = "dropboxexport_",
verbose: bool = False,
):
"""get_zip_URL - download a zip file from a given URL and extract it to a given location"""
r = requests.get(URLtoget, allow_redirects=True)
names = getFilename_fromCd(r.headers.get("content-disposition"))
fixed_fnames = names.split(";") # split the multiple results
this_filename = file_header + URL_string_filter(fixed_fnames[0])
# define paths and save the zip file
if extract_loc is None:
extract_loc = "dropbox_dl"
dl_place = join(os.getcwd(), extract_loc)
create_folder(dl_place)
save_loc = join(os.getcwd(), this_filename)
open(save_loc, "wb").write(r.content)
if verbose:
print("downloaded file size was {} MB".format(getsize(save_loc) / 1000000))
# unpack the archive
shutil.unpack_archive(save_loc, extract_dir=dl_place)
if verbose:
print("extracted zip file - ", datetime.now())
x = load_dir_files(dl_place, req_extension="", verbose=verbose)
# remove original
try:
os.remove(save_loc)
del save_loc
except Exception:
print("unable to delete original zipfile - check if exists", datetime.now())
print("finished extracting zip - ", datetime.now())
return dl_place
def merge_dataframes(data_dir: str, ext=".xlsx", verbose=False):
"""
merge_dataframes - given a filepath, loads and attempts to merge all files as dataframes
Args:
data_dir (str): [root directory to search in]
ext (str, optional): [anticipate file extension for the dataframes ]. Defaults to '.xlsx'.
Returns:
pd.DataFrame(): merged dataframe of all files
"""
src = Path(data_dir)
src_str = str(src.resolve())
mrg_df = pd.DataFrame()
all_reports = load_dir_files(directory=src_str, req_extension=ext, verbose=verbose)
failed = []
for df_path in tqdm(all_reports, total=len(all_reports), desc="joining data..."):
try:
this_df = pd.read_excel(df_path).convert_dtypes()
mrg_df = pd.concat([mrg_df, this_df], axis=0)
except Exception:
short_p = os.path.basename(df_path)
print(
f"WARNING - file with extension {ext} and name {short_p} could not be read."
)
failed.append(short_p)
if len(failed) > 0:
print("failed to merge {} files, investigate as needed")
if verbose:
pp.pprint(mrg_df.info(True))
return mrg_df
def download_URL(url: str, file=None, dlpath=None, verbose=False):
"""
download_URL - download a file from a URL and show progress bar
Parameters
----------
url : str, URL to download
file : str, optional, default None, name of file to save to. If None, will use the filename from the URL
dlpath : str, optional, default None, path to save the file to. If None, will save to the current working directory
verbose : bool, optional, default False, print progress bar
Returns
-------
str - path to the downloaded file
"""
if file is None:
if "?dl=" in url:
# is a dropbox link
prefile = url.split("/")[-1]
filename = str(prefile).split("?dl=")[0]
else:
filename = url.split("/")[-1]
file = clean(filename)
if dlpath is None:
dlpath = Path.cwd() # save to current working directory
else:
dlpath = Path(dlpath) # make a path object
r = requests.get(url, stream=True, allow_redirects=True)
total_size = int(r.headers.get("content-length"))
initial_pos = 0
dl_loc = dlpath / file
with open(str(dl_loc.resolve()), "wb") as f:
with tqdm(
total=total_size,
unit="B",
unit_scale=True,
desc=file,
initial=initial_pos,
ascii=True,
) as pbar:
for ch in r.iter_content(chunk_size=1024):
if ch:
f.write(ch)
pbar.update(len(ch))
if verbose:
print(f"\ndownloaded {file} to {dlpath}\n")
return str(dl_loc.resolve())
def dl_extract_zip(
URLtoget: str,
extract_loc: str = None,
file_header: str = "TEMP_archive_dl_",
verbose: bool = False,
):
"""
dl_extract_zip - generic function to download a zip file and extract it
Parameters
----------
URLtoget : str, zip file URL to download
extract_loc : str, optional, default None, path to save the zip file to. If None, will save to the current working directory
file_header : str, optional, default 'TEMP_archive_dl_', prefix for the zip file name
verbose : bool, optional, default False, print progress bar
Returns
-------
str - path to the downloaded and extracted folder
"""
extract_loc = Path(extract_loc)
extract_loc.mkdir(parents=True, exist_ok=True)
save_loc = download_URL(
url=URLtoget, file=f"{file_header}.zip", dlpath=None, verbose=verbose
)
shutil.unpack_archive(save_loc, extract_dir=extract_loc)
if verbose:
print("extracted zip file - ", datetime.now())
x = load_dir_files(extract_loc, req_extension="", verbose=verbose)
# remove original
try:
os.remove(save_loc)
del save_loc
except Exception as e:
warnings.warn(message=f"unable to delete original zipfile due to {e}")
if verbose:
print("finished extracting zip - ", datetime.now())
return extract_loc