-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathisynt.pro
164 lines (129 loc) · 5.92 KB
/
isynt.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
:- op(525, fy, ~ ).
:- op(550, xfy, & ). % right associative
:- op(575, xfy, v ). % right associative
:- op(600, xfx, <-> ). % non associative
:- op(800, yfx, <- ). % left associative
iprover(T) :- iprover(T,[]).
iprover(true,_):-!.
iprover(A,Vs):-memberchk(A,Vs),!.
iprover(_,Vs):-memberchk(false,Vs),!.
iprover(~A,Vs):-!,iprover(false,[A|Vs]).
iprover(A<->B,Vs):-!,iprover(B,[A|Vs]),iprover(A,[B|Vs]).
iprover((A->B),Vs):-!,iprover(B,[A|Vs]).
iprover((B<-A),Vs):-!,iprover(B,[A|Vs]).
iprover(A & B,Vs):-!,iprover(A,Vs),iprover(B,Vs).
iprover(G,Vs1):- % atomic or disj or false
select(Red,Vs1,Vs2),
iprover_reduce(Red,G,Vs2,Vs3),
!,
iprover(G,Vs3).
iprover(A v B, Vs):-(iprover(A,Vs) ; iprover(B,Vs)),!.
iprover_reduce(true,_,Vs1,Vs2):-!,iprover_impl(false,false,Vs1,Vs2).
iprover_reduce(~A,_,Vs1,Vs2):-!,iprover_impl(A,false,Vs1,Vs2).
iprover_reduce((A->B),_,Vs1,Vs2):-!,iprover_impl(A,B,Vs1,Vs2).
iprover_reduce((B<-A),_,Vs1,Vs2):-!,iprover_impl(A,B,Vs1,Vs2).
iprover_reduce((A & B),_,Vs,[A,B|Vs]):-!.
iprover_reduce((A<->B),_,Vs,[(A->B),(B->A)|Vs]):-!.
iprover_reduce((A v B),G,Vs,[B|Vs]):-iprover(G,[A|Vs]).
iprover_impl(true,B,Vs,[B|Vs]):-!.
iprover_impl(~C,B,Vs,[B|Vs]):-!,iprover((C->false),Vs).
iprover_impl((C->D),B,Vs,[B|Vs]):-!,iprover((C->D),[(D->B)|Vs]).
iprover_impl((D<-C),B,Vs,[B|Vs]):-!,iprover((C->D),[(D->B)|Vs]).
iprover_impl((C & D),B,Vs,[(C->(D->B))|Vs]):-!.
iprover_impl((C v D),B,Vs,[(C->B),(D->B)|Vs]):-!.
iprover_impl((C<->D),B,Vs,[((C->D)->((D->C)->B))|Vs]):-!.
iprover_impl(A,B,Vs,[B|Vs]):-memberchk(A,Vs).
iprover_test:-
Taut = ((p & q) <-> (((p v q)<->q)<->p)), iprover(Taut),
Contr=(a & ~a), \+ (iprover(Contr)).
% classical prover - via Glivenko's theorem
cprover(T):-iprover( ~ ~T).
abducibles_of(Formula,Abducibles):-var(Abducibles),!,atoms_of(Formula,Abducibles).
abducibles_of(_,_).
atom_of(A,R):-atomic(A),!,R=A.
atom_of(T,A):-arg(_,T,X),atom_of(X,A).
atoms_of(T,As):-setof(A,atom_of(T,A),As).
any_protasis(Prover,AggregatorOp,WithNeg,Abducibles,Formula,Assumption):-
abducibles_of(Formula,Abducibles),
mark_hypos(WithNeg,Abducibles,Literals),
subset_of(Literals,Hypos),
join_with(AggregatorOp,Hypos,Assumption),
\+ (call(Prover,Assumption->false)), % we do not assume contradictions !
call(Prover,Assumption->Formula). % we ensure this is a theorem
mark_hypos(_,[],[]).
mark_hypos(yes,[P|Ps],[P,~P|Ns]):-mark_hypos(yes,Ps,Ns).
mark_hypos(no,[P|Ps],[P|Ns]):-mark_hypos(no,Ps,Ns).
subset_of(Xs,Ts):-template_from(Xs,Ts),tsubset(Xs,Ts).
template_from(_,[]).
template_from([_|Xs],[_|Zs]):-template_from(Xs,Zs).
tsubset([],[]).
tsubset([X|Xs],[X|Rs]):-tsubset(Xs,Rs).
tsubset([_|Xs],Rs):-tsubset(Xs,Rs).
join_with_op(_,[],true).
join_with_op(_,[X],X).
join_with_op(Op,[X,Y|Xs],R):-join_with_op(Op,[Y|Xs],R0),R=..[Op,X,R0].
join_with(Op,Xs,R):-
memberchk(Op,[(->),(<-)]),!,
select(Head,Xs,Ys), append(Ys,[Head],Zs),
join_with_op((->),Zs,R).
join_with(Op,Xs,R):-Op=(<->),!,permutation(Xs,Ys),join_with_op(Op,Ys,R).
join_with(Op,Xs,R):- join_with_op(Op,Xs,R).
weakest_protasis(Prover,AggregatorOp,WithNeg,Abducibles,Formula,Assumption):-
setof(Assumption,
any_protasis(Prover,AggregatorOp,WithNeg,Abducibles,Formula,Assumption),
Assumptions),
weakest_with(Prover,Assumptions,Assumption).
weakest_with(_,Gs,G):-memberchk(true,Gs),!,G=true.
weakest_with(Prover,Gs,G):-select(G,Gs,Others),
\+ (member(Other,Others),weaker_with(Prover,Other,G)).
weaker_with(Prover,P,Q):- \+ call(Prover,(P->Q)), call(Prover,(Q->P)).
peirce(Prover,WhatIf):-
Formula=(((p->q)->p)->p),
WithNeg=yes, AggregatorOp=(v), Abducibles=[p],
weakest_protasis(Prover,AggregatorOp,WithNeg,Abducibles,Formula,WhatIf).
impl_aggr(H):-
T=(a<-((a<-(b<-d))&(b<-c))),
Prover=iprover, WithNeg=yes, AggregatorOp=(->), As=[c,d],
weakest_protasis(Prover,AggregatorOp,WithNeg,As,T,H).
contra_test(H):-
T=(p & ~p),
Prover=iprover, WithNeg=yes, AggregatorOp=(&),
weakest_protasis(Prover,AggregatorOp,WithNeg,_Abducibles,T,H).
explain_with(Prover,Abducibles,Prog,IC,G,Expl):-
any_protasis(Prover,(&),yes,Abducibles,(Prog->G), Expl),
call(Prover, Expl & Prog->G),
call(Prover,(Expl & Prog->IC)),
\+ (call(Prover,(Expl & Prog -> false))).
why_wet(Prover):-
IC = ~(rained & sunny),
P = sunny & (rained v sprinkler -> wet), As=[sprinkler,rained], G = wet,
writeln(prog=P), writeln(ic=IC),
explain_with(Prover,As,P,IC,G,Explanation),
writeln('Explanation:' --> Explanation).
mints_formula(P)-->[P]. mints_formula(~P)-->[P].
mints_formula((P->Q))-->[P,Q]. mints_formula((P->Q)->R)-->[P,Q,R].
mints_formula((P->(Q->R)))-->[P,Q,R]. mints_formula((P->(Q v R))) -->[P,Q,R].
mints_formula((P-> ~Q))-->[P,Q]. mints_formula((~P->Q))-->[P,Q].
mints_conjuncts([])-->[].
mints_conjuncts([F|Fs])-->mints_formula(F),mints_conjuncts(Fs).
mints_conjuncts(Atoms,Conjuncts):-mints_conjuncts(Ps,Atoms,[]),sort(Ps,Conjuncts).
any_mints_premise(Prover,Abducibles,Formula,Premise):-
abducibles_of(Formula,Abducibles),
subset_of(Abducibles,Chosen), % select a subset of Abducibles
template_from(Abducibles,Atoms), % Atoms is a list of free variables
part_as_equiv(Atoms,Chosen), % Chosen provides unique occurrences of Atoms
mints_conjuncts(Atoms,Conjuncts), % builds the Mints formulas
join_with_op((&),Conjuncts,Premise), % joins Conjuncts into a conjunction
\+ (call(Prover,Premise->false)), % ensures Premise is not a contradiction
call(Prover,Premise->Formula). % ensure that Premise implies Formula
part_as_equiv([],[]).
part_as_equiv([U|Xs],[U|Us]):-complement_of(U,Xs,Rs),part_as_equiv(Rs,Us).
complement_of(_,[],[]).
complement_of(U,[X|Xs],NewZs):-complement_of(U,Xs,Zs),place_element(U,X,Zs,NewZs).
place_element(U,U,Zs,Zs).
place_element(_,X,Zs,[X|Zs]).
weakest_mints_premise(Prover,Abducibles,Formula,Premise):-
setof(Premise,
any_mints_premise(Prover,Abducibles,Formula,Premise),
Premises),
weakest_with(Prover,Premises,Premise).