-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathfilter_annotation.py
143 lines (118 loc) · 4.68 KB
/
filter_annotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python3
"""
opencv based annotation of image types.
(c) Philipp Tschandl, 2018
You may re-use this code under the CC BY-NC 4.0 license.
Instructions:
- Start the script with "python classify_annotation.py"
- All images should be within the subfolder "images/"
- Click on the Image Window to focus it
- Annotate the image:
- Enter image type: 'd', 'c', 'm' or 'p'
- Delete image type annotation: return
- Save and proceed: spacebar or enter
- Exit annotation at current stage: esc
Output:
- .csv file with the following format: IMAGE_NAME,ANNOTATION,TIMESTAMP
"""
import pandas as pd
import cv2
import time
import os
import glob
from datetime import datetime
# Load dataframe with intermittent results if present
if os.path.isfile("./annotations.csv"):
print("Previous annotation CSV found: loading...")
df = pd.read_csv("./annotations.csv", index_col=0)
else:
print("No annotation CSV found: creating list of JPEG files from image-folder...")
paths = glob.glob("./images/*.jpg")
df = pd.DataFrame(index=paths, columns=["impath","rating_type", "rating_date"])
df.impath = paths
df.rating_type = ""
df.rating_date = ""
current_index, current_path, current_type, current_date = "", "", "", ""
# Get the first empty case and return False if there is none
def get_next_case():
global current_index, current_date, current_path, current_type
emptyindices = df.loc[(df.rating_type == "") | (df.rating_type.isnull())].index
if len(emptyindices) > 0:
current_path, current_type, current_date = df.loc[emptyindices[0]]
current_index = emptyindices[0]
return True
else:
return False
img=[]
# Rectangle variables for live annotation monitoring
x, y, h, w = (10, 10, 125, 125)
def load_new_image():
global img
# load a new image
print("Current Image:", current_path)
img = cv2.imread(current_path) # load a dummy image
img = cv2.resize(img, (1000, 680))
# draw an empty rectangle (placeholder for type indicator)
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), -1)
# display the saved (current) image type indicator
frame = cv2.putText(img, "" if type(current_type)!=str else current_type, (50,95),
cv2.FONT_HERSHEY_SIMPLEX, 2, 5, thickness=5)
if get_next_case():
df.to_csv("./annotations.csv")
load_new_image()
while(1):
cv2.imshow('img', img)
k = cv2.waitKey(33)
# Stop annotation (Esc)
if k == 27:
print("Exiting...")
break
elif k == 255:
continue
# Dermatoscopic ("d")
elif k == 100:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), -1)
frame = cv2.putText(img, "D", (50,95), cv2.FONT_HERSHEY_SIMPLEX, 2, 5, thickness=5)
current_type = "d"
print("d", end='\r')
# Clinic ("c")
elif k == 99:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), -1)
frame = cv2.putText(img, "C", (50,95), cv2.FONT_HERSHEY_SIMPLEX, 2, 5, thickness=5)
current_type = "c"
print("c", end='\r')
# Macro ("m")
elif k == 109:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), -1)
frame = cv2.putText(img, "M", (50,95), cv2.FONT_HERSHEY_SIMPLEX, 2, 5, thickness=5)
current_type = "m"
print("m", end='\r')
# Other ("p")
elif k == 112:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), -1)
frame = cv2.putText(img, "P", (50,95), cv2.FONT_HERSHEY_SIMPLEX, 2, 5, thickness=5)
current_type = "p"
print("p", end='\r')
# Remove (Return)
elif k == 127:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), -1)
frame = cv2.putText(img, "", (60,85), cv2.FONT_HERSHEY_SIMPLEX, 2, 5, thickness=5)
current_type = ""
print("deleted", end='\r')
# Save (Enter or spacebar)
elif (k == 13) | (k==32):
frame = cv2.putText(img, "Saving...", (200,200), cv2.FONT_HERSHEY_SIMPLEX, 1, 5, thickness=5)
print("Saving value...", end='\r')
df.loc[current_index, "rating_date"] = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
df.loc[current_index, "rating_type"] = current_type
# Optional timeout to avoid inadvertent annotation of next case.
time.sleep(0.1)
print("Getting new case...", end='\r')
if get_next_case():
load_new_image()
else:
print("All done!")
break
continue
print("Saving variables to file...")
df.to_csv("./annotations.csv")