-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathrecipe__summarize_webpage.py
138 lines (100 loc) · 4.56 KB
/
recipe__summarize_webpage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -*- coding: utf-8 -*-
import sys
import json
import nltk
import numpy
import urllib2
from BeautifulSoup import BeautifulStoneSoup
URL = sys.argv[1]
# Some parameters you can use to tune the core algorithm.
N = 100 # Number of words to consider
CLUSTER_THRESHOLD = 5 # Distance between words to consider
TOP_SENTENCES = 5 # Number of sentences to return for a "top n" summary
# Approach taken from "The Automatic Creation of Literature Abstracts" by H.P. Luhn
def _score_sentences(sentences, important_words):
scores = []
sentence_idx = -1
for s in [nltk.tokenize.word_tokenize(s) for s in sentences]:
sentence_idx += 1
word_idx = []
# For each word in the word list...
for w in important_words:
try:
# Compute an index for where any important words occur in the sentence
word_idx.append(s.index(w))
except ValueError, e: # w not in this particular sentence
pass
word_idx.sort()
# It is possible that some sentences may not contain any important words at all
if len(word_idx)== 0: continue
# Using the word index, compute clusters by using a max distance threshold
# for any two consecutive words
clusters = []
cluster = [word_idx[0]]
i = 1
while i < len(word_idx):
if word_idx[i] - word_idx[i - 1] < CLUSTER_THRESHOLD:
cluster.append(word_idx[i])
else:
clusters.append(cluster[:])
cluster = [word_idx[i]]
i += 1
clusters.append(cluster)
# Score each cluster. The max score for any given cluster is the score
# for the sentence
max_cluster_score = 0
for c in clusters:
significant_words_in_cluster = len(c)
total_words_in_cluster = c[-1] - c[0] + 1
score = 1.0 * significant_words_in_cluster \
* significant_words_in_cluster / total_words_in_cluster
if score > max_cluster_score:
max_cluster_score = score
scores.append((sentence_idx, score))
return scores
def summarize(txt):
sentences = [s for s in nltk.tokenize.sent_tokenize(txt)]
normalized_sentences = [s.lower() for s in sentences]
words = [w.lower() for sentence in normalized_sentences for w in
nltk.tokenize.word_tokenize(sentence)]
fdist = nltk.FreqDist(words)
top_n_words = [w[0] for w in fdist.items()
if w[0] not in nltk.corpus.stopwords.words('english')][:N]
scored_sentences = _score_sentences(normalized_sentences, top_n_words)
# Summaization Approach 1:
# Filter out non-significant sentences by using the average score plus a
# fraction of the std dev as a filter
avg = numpy.mean([s[1] for s in scored_sentences])
std = numpy.std([s[1] for s in scored_sentences])
mean_scored = [(sent_idx, score) for (sent_idx, score) in scored_sentences
if score > avg + 0.5 * std]
# Summarization Approach 2:
# Another approach would be to return only the top N ranked sentences
top_n_scored = sorted(scored_sentences, key=lambda s: s[1])[-TOP_SENTENCES:]
top_n_scored = sorted(top_n_scored, key=lambda s: s[0])
# Decorate the post object with summaries
return dict(top_n_summary=[sentences[idx] for (idx, score) in top_n_scored],
mean_scored_summary=[sentences[idx] for (idx, score) in mean_scored])
# A minimalist approach or scraping the text out of a web page. Lots of time could
# be spent here trying to extract the core content, detecting headers, footers, margins,
# navigation, etc.
def clean_html(html):
return BeautifulStoneSoup(nltk.clean_html(html),
convertEntities=BeautifulStoneSoup.HTML_ENTITIES).contents[0]
if __name__ == '__main__':
page = urllib2.urlopen(URL).read()
# It's entirely possible that this "clean page" will be a big mess. YMMV.
# The good news is that summarize algorithm inherently accounts for handling
# a lot of this noise.
clean_page = clean_html(page)
summary = summarize(clean_page)
print "-------------------------------------------------"
print " 'Top N Summary'"
print "-------------------------------------------------"
print " ".join(summary['top_n_summary'])
print
print
print "-------------------------------------------------"
print " 'Mean Scored' Summary"
print "-------------------------------------------------"
print " ".join(summary['mean_scored_summary'])