-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathl2d.py
535 lines (473 loc) · 24.6 KB
/
l2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
### Functions to convert lidar point clouds into 2D space
### CARLA Simulator and client_bounding_boxes.py are licensed under the terms of the MIT license
### For a copy, see <https://opensource.org/licenses/MIT>
### For more information about CARLA Simulator, visit https://carla.org/
import numpy as np
import PIL
from PIL import Image
from PIL import ImageDraw
import json
import pickle
import os
import glob
import sys
import cv2
import carla
# Special function that computes attributes based purely on the semantically-calculated bounding boxes
def semantic_auto_annotate(objects, camera, lidar_data, ego_velocity, ego_location, max_dist = 100, min_detect = 5, show_img = None, gt_class = None):
filtered_data = filter_lidar(lidar_data, camera, max_dist)
if show_img != None:
show_lidar(filtered_data, camera, show_img)
### Delete this section if object_idx issue has been fixed in CARLA
filtered_data = np.array([p for p in filtered_data if p.object_idx != 0])
filtered_data = get_points_id(filtered_data, objects, camera, max_dist)
###
visible_id, idx_counts = np.unique([p.object_idx for p in filtered_data], return_counts=True)
visible_objects = [v for v in objects if v.id in visible_id]
visible_objects= [v for v in objects if idx_counts[(visible_id == v.id).nonzero()[0]] >= min_detect] # min_detect controls the minimum number of lidar points to "see" an object, allowing occluded or distant objects to remain untracked
# Now we have a dictionary storing the object
annotated_dict = {}
for o in visible_objects:
object_bbox = get_2d_bb(o, camera, True) # We set the hasWorldCoord to true, because we do have a separate location for these objects!
# Process this into left, up, right, bottom
object_bbox = [object_bbox[0][0], object_bbox[0][1], object_bbox[1][0], object_bbox[1][1]]
if gt_class is not None:
object_class = gt_class
else:
object_class = "None"
# Get relative velocity
object_velocity = o.get_velocity()
object_relative_velocity = object_velocity - ego_velocity
# Get distance (This is mainly where the function differs from the below one)
object_location = o.loc_given
object_distance = object_location.distance(ego_location)
annotated_dict[str(o.id)] = {'bbox': object_bbox, 'location': object_location, 'class': object_class, 'rel_velocity': object_relative_velocity, 'distance': object_distance}
return annotated_dict
# Collect the data in a single frame
def auto_annotate_lidar_process(objects, camera, lidar_data, ego_velocity, ego_location, max_dist = 100, min_detect = 5, show_img = None, gt_class = None):
filtered_data = filter_lidar(lidar_data, camera, max_dist)
if show_img != None:
show_lidar(filtered_data, camera, show_img)
### Delete this section if object_idx issue has been fixed in CARLA
filtered_data = np.array([p for p in filtered_data if p.object_idx != 0])
filtered_data = get_points_id(filtered_data, objects, camera, max_dist)
###
visible_id, idx_counts = np.unique([p.object_idx for p in filtered_data], return_counts=True)
visible_objects = [v for v in objects if v.id in visible_id]
visible_objects= [v for v in objects if idx_counts[(visible_id == v.id).nonzero()[0]] >= min_detect]
# Now we have a dictionary storing the object
annotated_dict = {}
for o in visible_objects:
object_bbox = get_2d_bb(o, camera)
# Process this into left, up, right, bottom
object_bbox = [object_bbox[0][0], object_bbox[0][1], object_bbox[1][0], object_bbox[1][1]]
if gt_class is not None:
object_class = gt_class
else:
object_class = "None"
# Get relative velocity
object_velocity = o.get_velocity()
object_relative_velocity = object_velocity - ego_velocity
# Get distance
object_location = o.get_transform().location
object_distance = object_location.distance(ego_location)
annotated_dict[str(o.id)] = {'bbox': object_bbox, 'location': object_location, 'class': object_class, 'rel_velocity': object_relative_velocity, 'distance': object_distance}
return annotated_dict
### From Mukhlas Adib, this function can debug occlusion filtering via depth image
def auto_annotate_debug(vehicles, camera, depth_img, depth_show=False, max_dist=100, depth_margin=-1, patch_ratio=0.5, resize_ratio=0.5, json_path=None):
vehicles = filter_angle_distance(vehicles, camera, max_dist)
bounding_boxes_2d = [get_2d_bb(vehicle, camera) for vehicle in vehicles]
if json_path is not None:
vehicle_class = get_vehicle_class(vehicles, json_path)
else:
vehicle_class = []
filtered_out, removed_out, depth_area, depth_show = filter_occlusion_bbox(bounding_boxes_2d, vehicles, camera, depth_img, vehicle_class, depth_show, depth_margin, patch_ratio, resize_ratio)
return filtered_out, removed_out, depth_area, depth_show
### Get camera intrinsic matrix 'k'
def get_camera_intrinsic(sensor):
VIEW_WIDTH = int(sensor.attributes['image_size_x'])
VIEW_HEIGHT = int(sensor.attributes['image_size_y'])
VIEW_FOV = int(float(sensor.attributes['fov']))
calibration = np.identity(3)
calibration[0, 2] = VIEW_WIDTH / 2.0
calibration[1, 2] = VIEW_HEIGHT / 2.0
calibration[0, 0] = calibration[1, 1] = VIEW_WIDTH / (2.0 * np.tan(VIEW_FOV * np.pi / 360.0))
return calibration
### Extract bounding box vertices of vehicle
def create_bb_points(vehicle):
cords = np.zeros((8, 4))
extent = vehicle.bounding_box.extent
cords[0, :] = np.array([extent.x, extent.y, -extent.z, 1])
cords[1, :] = np.array([-extent.x, extent.y, -extent.z, 1])
cords[2, :] = np.array([-extent.x, -extent.y, -extent.z, 1])
cords[3, :] = np.array([extent.x, -extent.y, -extent.z, 1])
cords[4, :] = np.array([extent.x, extent.y, extent.z, 1])
cords[5, :] = np.array([-extent.x, extent.y, extent.z, 1])
cords[6, :] = np.array([-extent.x, -extent.y, extent.z, 1])
cords[7, :] = np.array([extent.x, -extent.y, extent.z, 1])
return cords
### Get transformation matrix from carla.Transform object
def get_matrix(transform):
rotation = transform.rotation
location = transform.location
c_y = np.cos(np.radians(rotation.yaw))
s_y = np.sin(np.radians(rotation.yaw))
c_r = np.cos(np.radians(rotation.roll))
s_r = np.sin(np.radians(rotation.roll))
c_p = np.cos(np.radians(rotation.pitch))
s_p = np.sin(np.radians(rotation.pitch))
matrix = np.matrix(np.identity(4))
matrix[0, 3] = location.x
matrix[1, 3] = location.y
matrix[2, 3] = location.z
matrix[0, 0] = c_p * c_y
matrix[0, 1] = c_y * s_p * s_r - s_y * c_r
matrix[0, 2] = -c_y * s_p * c_r - s_y * s_r
matrix[1, 0] = s_y * c_p
matrix[1, 1] = s_y * s_p * s_r + c_y * c_r
matrix[1, 2] = -s_y * s_p * c_r + c_y * s_r
matrix[2, 0] = s_p
matrix[2, 1] = -c_p * s_r
matrix[2, 2] = c_p * c_r
return matrix
### Transform coordinate from vehicle reference to world reference
def vehicle_to_world(cords, vehicle, hasWorldCoords=False):
bb_transform = carla.Transform(vehicle.bounding_box.location)
bb_vehicle_matrix = get_matrix(bb_transform)
if hasWorldCoords:
v_trans = carla.Transform(vehicle.loc_given, vehicle.get_transform().rotation) # I set it to the given location but keep the rotation
else:
v_trans = vehicle.get_transform()
vehicle_world_matrix = get_matrix(v_trans)
bb_world_matrix = np.dot(vehicle_world_matrix, bb_vehicle_matrix)
world_cords = np.dot(bb_world_matrix, np.transpose(cords))
return world_cords
### Transform coordinate from world reference to sensor reference
def world_to_sensor(cords, sensor):
sensor_world_matrix = get_matrix(sensor.get_transform())
world_sensor_matrix = np.linalg.inv(sensor_world_matrix)
sensor_cords = np.dot(world_sensor_matrix, cords)
return sensor_cords
### Transform coordinate from vehicle reference to sensor reference
def vehicle_to_sensor(cords, vehicle, sensor, hasWorldCoords = False):
world_cord = vehicle_to_world(cords, vehicle, hasWorldCoords)
sensor_cord = world_to_sensor(world_cord, sensor)
return sensor_cord
### Summarize bounding box creation and project the poins in sensor image
def get_bounding_box(vehicle, sensor, hasWorldCoords=False):
camera_k_matrix = get_camera_intrinsic(sensor)
bb_cords = create_bb_points(vehicle)
cords_x_y_z = vehicle_to_sensor(bb_cords, vehicle, sensor, hasWorldCoords)[:3, :]
# Trying to see if not negating the z axis (which I already account for) works better
if hasWorldCoords:
cords_y_minus_z_x = np.concatenate([cords_x_y_z[1, :], cords_x_y_z[2, :], cords_x_y_z[0, :]])
else:
cords_y_minus_z_x = np.concatenate([cords_x_y_z[1, :], -cords_x_y_z[2, :], cords_x_y_z[0, :]])
bbox = np.transpose(np.dot(camera_k_matrix, cords_y_minus_z_x))
camera_bbox = np.concatenate([bbox[:, 0] / bbox[:, 2], bbox[:, 1] / bbox[:, 2], bbox[:, 2]], axis=1)
return camera_bbox
### Draw 2D bounding box (4 vertices) from 3D bounding box (8 vertices) in image
### 2D bounding box is represented by two corner points
def p3d_to_p2d_bb(p3d_bb):
min_x = np.amin(p3d_bb[:,0])
min_y = np.amin(p3d_bb[:,1])
max_x = np.amax(p3d_bb[:,0])
max_y = np.amax(p3d_bb[:,1])
p2d_bb = np.array([[min_x,min_y] , [max_x,max_y]])
return p2d_bb
### Summarize 2D bounding box creation
def get_2d_bb(vehicle, sensor, hasWorldCoords=False):
p3d_bb = get_bounding_box(vehicle, sensor, hasWorldCoords)
p2d_bb = p3d_to_p2d_bb(p3d_bb)
return p2d_bb
### Use these functions to remove invisible vehicles
### Get numpy 2D array of vehicles' location and rotation from world reference, also locations from sensor reference
def get_list_transform(vehicles_list, sensor):
t_list = []
for vehicle in vehicles_list:
v = vehicle.get_transform()
transform = [v.location.x , v.location.y , v.location.z , v.rotation.roll , v.rotation.pitch , v.rotation.yaw]
t_list.append(transform)
t_list = np.array(t_list).reshape((len(t_list),6))
transform_h = np.concatenate((t_list[:,:3],np.ones((len(t_list),1))),axis=1)
sensor_world_matrix = get_matrix(sensor.get_transform())
world_sensor_matrix = np.linalg.inv(sensor_world_matrix)
transform_s = np.dot(world_sensor_matrix, transform_h.T).T
return t_list , transform_s
### Remove vehicles that are not in the FOV of the sensor
def filter_angle(vehicles_list, v_transform, v_transform_s, sensor):
attr_dict = sensor.attributes
VIEW_FOV = float(attr_dict['fov'])
v_angle = np.arctan2(v_transform_s[:,1],v_transform_s[:,0]) * 180 / np.pi
selector = np.array(np.absolute(v_angle) < (int(VIEW_FOV)/2))
vehicles_list_f = [v for v, s in zip(vehicles_list, selector) if s]
v_transform_f = v_transform[selector[:,0],:]
v_transform_s_f = v_transform_s[selector[:,0],:]
return vehicles_list_f , v_transform_f , v_transform_s_f
### Remove vehicles that have distance > max_dist from the sensor
def filter_distance(vehicles_list, v_transform, v_transform_s, sensor, max_dist=100):
s = sensor.get_transform()
s_transform = np.array([s.location.x , s.location.y , s.location.z])
dist2 = np.sum(np.square(v_transform[:,:3] - s_transform), axis=1)
selector = dist2 < (max_dist**2)
vehicles_list_f = [v for v, s in zip(vehicles_list, selector) if s]
v_transform_f = v_transform[selector,:]
v_transform_s_f = v_transform_s[selector,:]
return vehicles_list_f , v_transform_f , v_transform_s_f
### Remove vehicles that are occluded from the sensor view based on one point depth measurement
### NOT USED by default because of the unstable result
def filter_occlusion_1p(vehicles_list, v_transform, v_transform_s, sensor, depth_img, depth_margin=2.0):
camera_k_matrix = get_camera_intrinsic(sensor)
CAM_W = int(sensor.attributes['image_size_x'])
CAM_H = int(sensor.attributes['image_size_y'])
pos_x_y_z = v_transform_s.T
pos_y_minus_z_x = np.concatenate([pos_x_y_z[1, :], -pos_x_y_z[2, :]-0.0, pos_x_y_z[0, :]])
img_pos = np.transpose(np.dot(camera_k_matrix, pos_y_minus_z_x))
camera_pos = np.concatenate([img_pos[:, 0] / img_pos[:, 2], img_pos[:, 1] / img_pos[:, 2], img_pos[:, 2]], axis=1)
u_arr = np.array(camera_pos[:,0]).flatten()
v_arr = np.array(camera_pos[:,1]).flatten()
dist = np.array(v_transform_s[:,0]).flatten()
depth_patches = []
v_depth = []
for u, v in zip(list(u_arr),list(v_arr)):
if u<=CAM_W and v<=CAM_H:
v_depth.append(depth_img[int(v),int(u)])
depth_a = np.array([[int(u)-3,int(v)-3] , [int(u)+3,int(v)+3]])
depth_patches.append(depth_a)
else:
v_depth.append(0)
v_depth = np.array(v_depth)
selector = (dist-v_depth) < depth_margin
vehicles_list_f = [v for v, s in zip(vehicles_list, selector) if s]
v_transform_f = v_transform[selector,:]
v_transform_s_f = v_transform_s[selector,:]
return vehicles_list_f , v_transform_f , v_transform_s_f, depth_patches
### Apply angle and distance filters in one function
def filter_angle_distance(vehicles_list, sensor, max_dist=100):
vehicles_transform , vehicles_transform_s = get_list_transform(vehicles_list, sensor)
vehicles_list , vehicles_transform , vehicles_transform_s = filter_distance(vehicles_list, vehicles_transform, vehicles_transform_s, sensor, max_dist)
vehicles_list , vehicles_transform , vehicles_transform_s = filter_angle(vehicles_list, vehicles_transform, vehicles_transform_s, sensor)
return vehicles_list
### Apply occlusion filter based on resized bounding box depth values
def filter_occlusion_bbox(bounding_boxes, vehicles, sensor, depth_img, v_class=None, depth_capture=False, depth_margin=-1, patch_ratio=0.5, resize_ratio=0.5):
filtered_bboxes = []
filtered_vehicles = []
filtered_v_class = []
filtered_out = {}
removed_bboxes = []
removed_vehicles = []
removed_v_class = []
removed_out = {}
selector = []
patches = []
patch_delta = []
_, v_transform_s = get_list_transform(vehicles, sensor)
for v, vs, bbox in zip(vehicles,v_transform_s,bounding_boxes):
dist = vs[:,0]
if depth_margin < 0:
depth_margin = (v.bounding_box.extent.x**2+v.bounding_box.extent.y**2)**0.5 + 0.25
uc = int((bbox[0,0]+bbox[1,0])/2)
vc = int((bbox[0,1]+bbox[1,1])/2)
wp = int((bbox[1,0]-bbox[0,0])*resize_ratio/2)
hp = int((bbox[1,1]-bbox[0,1])*resize_ratio/2)
u1 = uc-wp
u2 = uc+wp
v1 = vc-hp
v2 = vc+hp
depth_patch = np.array(depth_img[v1:v2,u1:u2])
dist_delta = dist-depth_patch
s_patch = np.array(dist_delta < depth_margin)
s = np.sum(s_patch) > s_patch.shape[0]*patch_ratio
selector.append(s)
patches.append(np.array([[u1,v1],[u2,v2]]))
patch_delta.append(dist_delta)
for bbox,v,s in zip(bounding_boxes,vehicles,selector):
if s:
filtered_bboxes.append(bbox)
filtered_vehicles.append(v)
else:
removed_bboxes.append(bbox)
removed_vehicles.append(v)
filtered_out['bbox']=filtered_bboxes
filtered_out['vehicles']=filtered_vehicles
removed_out['bbox']=removed_bboxes
removed_out['vehicles']=removed_vehicles
if v_class is not None:
for cls,s in zip(v_class,selector):
if s:
filtered_v_class.append(cls)
else:
removed_v_class.append(cls)
filtered_out['class']=filtered_v_class
removed_out['class']=removed_v_class
if depth_capture:
depth_debug(patches, depth_img, sensor)
for i,matrix in enumerate(patch_delta):
print("\nvehicle "+ str(i) +": \n" + str(matrix))
depth_capture = False
return filtered_out, removed_out, patches, depth_capture
### Display area in depth image where measurement values are taken
def depth_debug(depth_patches, depth_img, sensor):
CAM_W = int(sensor.attributes['image_size_x'])
CAM_H = int(sensor.attributes['image_size_y'])
#depth_img = depth_img/1000*255
depth_img = np.log10(depth_img)
depth_img = depth_img*255/4
depth_img
depth_3ch = np.zeros((CAM_H,CAM_W,3))
depth_3ch[:,:,0] = depth_3ch[:,:,1] = depth_3ch[:,:,2] = depth_img
depth_3ch = np.uint8(depth_3ch)
image = Image.fromarray(depth_3ch, 'RGB')
img_draw = ImageDraw.Draw(image)
for crop in depth_patches:
u1 = int(crop[0,0])
v1 = int(crop[0,1])
u2 = int(crop[1,0])
v2 = int(crop[1,1])
crop_bbox = [(u1,v1),(u2,v2)]
img_draw.rectangle(crop_bbox, outline ="red")
image.show()
### Filter out lidar points that are outside camera FOV
def filter_lidar(lidar_data, camera, max_dist):
CAM_W = int(camera.attributes['image_size_x'])
CAM_H = int(camera.attributes['image_size_y'])
CAM_HFOV = float(camera.attributes['fov'])
CAM_VFOV = np.rad2deg(2*np.arctan(np.tan(np.deg2rad(CAM_HFOV/2))*CAM_H/CAM_W))
lidar_points = np.array([[p.point.y,-p.point.z,p.point.x] for p in lidar_data])
dist2 = np.sum(np.square(lidar_points), axis=1).reshape((-1))
p_angle_h = np.absolute(np.arctan2(lidar_points[:,0],lidar_points[:,2]) * 180 / np.pi).reshape((-1))
p_angle_v = np.absolute(np.arctan2(lidar_points[:,1],lidar_points[:,2]) * 180 / np.pi).reshape((-1))
selector = np.array(np.logical_and(dist2 < (max_dist**2), np.logical_and(p_angle_h < (CAM_HFOV/2), p_angle_v < (CAM_VFOV/2))))
filtered_lidar = [pt for pt, s in zip(lidar_data, selector) if s]
return filtered_lidar
### Save camera image with projected lidar points for debugging purpose
def show_lidar(lidar_data, camera, carla_img, path=''):
lidar_np = np.array([[p.point.y,-p.point.z,p.point.x] for p in lidar_data])
cam_k = get_camera_intrinsic(camera)
# Project LIDAR 3D to Camera 2D
lidar_2d = np.transpose(np.dot(cam_k,np.transpose(lidar_np)))
lidar_2d = (lidar_2d/lidar_2d[:,2].reshape((-1,1))).astype(int)
# Visualize the result
c_scale = []
for pts in lidar_data:
if pts.object_idx == 0: c_scale.append(255)
else: c_scale.append(0)
carla_img.convert(carla.ColorConverter.Raw)
img_bgra = np.array(carla_img.raw_data).reshape((carla_img.height,carla_img.width,4))
img_rgb = np.zeros((carla_img.height,carla_img.width,3))
img_rgb[:,:,0] = img_bgra[:,:,2]
img_rgb[:,:,1] = img_bgra[:,:,1]
img_rgb[:,:,2] = img_bgra[:,:,0]
img_rgb = np.uint8(img_rgb)
for p,c in zip(lidar_2d,c_scale):
c = int(c)
cv2.circle(img_rgb,tuple(p[:2]),1,(c,c,c),-1)
filename = path + 'out_lidar_img/%06d.jpg' % carla_img.frame
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
img_rgb = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2RGB)
cv2.imwrite(filename, img_rgb)
#Identical to show_lidar but with a different path and color method
def show_sem_lidar(lidar_data, camera, carla_img, path = ''):
color_conversion = {'0': (0, 0, 0), '1': (70, 70, 70), '2': (100, 40, 40), '3': (55, 90, 80), '4': (220, 20, 60), '5': (153, 153, 153), '6': (157, 234, 50), '7': (128, 64, 128), '8': (244, 35, 232), '9': (107, 142, 35), '10': (0, 0, 142), '11': (102, 102, 156), '12': (220, 220, 0), '13': (70, 130, 180), '14': (81, 0, 81), '15': (150, 100, 100), '16': (230, 150, 140), '17': (180, 165, 180), '18': (250, 170, 30), '19': (110, 190, 160), '20': (170, 120, 50), '21': (45, 60, 150), '22': (145, 170, 100)}
lidar_np = np.array([[p.point.y,-p.point.z,p.point.x] for p in lidar_data])
cam_k = get_camera_intrinsic(camera)
# Project LIDAR 3D to Camera 2D
lidar_2d = np.transpose(np.dot(cam_k,np.transpose(lidar_np)))
lidar_2d = (lidar_2d/lidar_2d[:,2].reshape((-1,1))).astype(int)
# Visualize the result
c_scale = []
for pts in lidar_data:
c_scale.append(color_conversion[str(pts.object_tag)])
carla_img.convert(carla.ColorConverter.Raw)
img_bgra = np.array(carla_img.raw_data).reshape((carla_img.height,carla_img.width,4))
img_rgb = np.zeros((carla_img.height,carla_img.width,3))
img_rgb[:,:,0] = img_bgra[:,:,2]
img_rgb[:,:,1] = img_bgra[:,:,1]
img_rgb[:,:,2] = img_bgra[:,:,0]
img_rgb = np.uint8(img_rgb)
for p,c in zip(lidar_2d,c_scale):
cv2.circle(img_rgb,tuple(p[:2]),1,c,-1)
filename = path + 'out_lidar_sem_img/%06d.jpg' % carla_img.frame
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
img_rgb = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2RGB)
cv2.imwrite(filename, img_rgb)
### Add actor ID of the vehcile hit by the lidar points
### Only used before the object_id issue of semantic lidar solved
def get_points_id(lidar_points, vehicles, camera, max_dist):
vehicles_f = filter_angle_distance(vehicles, camera, max_dist)
fixed_lidar_points = []
for p in lidar_points:
sensor_world_matrix = get_matrix(camera.get_transform())
pw = np.dot(sensor_world_matrix, [[p.point.x],[p.point.y],[p.point.z],[1]])
pw = carla.Location(pw[0,0],pw[1,0],pw[2,0])
for v in vehicles_f:
if v.bounding_box.contains(pw, v.get_transform()):
p.object_idx = v.id
break
fixed_lidar_points.append(p)
return fixed_lidar_points
### Use this function to save just the rgb image (with and without bounding box) in a specified path format
def save_output_img(carla_img, out_data, cc_rgb=carla.ColorConverter.Raw, path='', save_patched=False):
# Convert class to color
class_to_color_dict = {"Vehicle": (255, 0, 0), "Pedestrian": (0, 0, 255), "Traffic Sign": (220, 200, 0), "Traffic Light": (250, 170, 30)}
carla_img.save_to_disk(path + 'out_rgb_raw/%06d.png' % carla_img.frame, cc_rgb)
if save_patched:
carla_img.convert(cc_rgb)
img_bgra = np.array(carla_img.raw_data).reshape((carla_img.height,carla_img.width,4))
img_rgb = np.zeros((carla_img.height,carla_img.width,3))
img_rgb[:,:,0] = img_bgra[:,:,2]
img_rgb[:,:,1] = img_bgra[:,:,1]
img_rgb[:,:,2] = img_bgra[:,:,0]
img_rgb = np.uint8(img_rgb)
image = Image.fromarray(img_rgb, 'RGB')
img_draw = ImageDraw.Draw(image)
for obj in out_data.values():
crop = obj['bbox']
if obj['class'] in class_to_color_dict.keys():
color_str = class_to_color_dict[obj['class']]
else:
color_str = "black"
u1 = int(crop[0])
v1 = int(crop[1])
u2 = int(crop[2])
v2 = int(crop[3])
crop_bbox = [(u1,v1),(u2,v2)]
img_draw.rectangle(crop_bbox, outline =color_str)
filename = path + 'out_rgb_bbox/%06d.png' % carla_img.frame
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
image.save(filename)
### Use this function to convert depth image (carla.Image) to a depth map in meter
def extract_depth(depth_img):
depth_img.convert(carla.ColorConverter.Depth)
depth_meter = np.array(depth_img.raw_data).reshape((depth_img.height,depth_img.width,4))[:,:,0] * 1000 / 255
return depth_meter
### Use this function to get vehicle's snapshots that can be processed by auto_annotate() function.
def snap_processing(vehiclesActor, worldSnap, veh_check=None):
vehicles = []
for v in vehiclesActor:
vid = v.id
if veh_check is not None and v.id == veh_check:
continue
vsnap = worldSnap.find(vid)
if vsnap is None:
continue
vsnap.bounding_box = v.bounding_box
vsnap.type_id = v.type_id
vehicles.append(vsnap)
return vehicles
def snap_processing_manual_bbox(ids, worldSnap, bboxes):
actors = []
for v in ids:
vid = v
vsnap = worldSnap.find(vid)
if vsnap is None:
continue
vsnap.bounding_box = bboxes[str(vid)][0]
# Add this extra attribute "loc_given" to have the center
vsnap.loc_given = bboxes[str(vid)][1]
vsnap.type_id = "None" # We handle classes differently, we use this so we can handle static non-id'd objects like traffic lights
actors.append(vsnap)
return actors