-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd3m-example.sh
executable file
·27 lines (24 loc) · 995 Bytes
/
d3m-example.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#!/bin/bash
# -*- compile-command: "./docker-example.sh"; -*-
set -e
DATA=/mnt/datasets/training_datasets/seed_datasets_archive
SET=185_baseball
PRIM=d3m.primitives.classification.logistic_regression.SKlearn
PIPELINE=862df0a2-2f87-450d-a6bd-24e9269a8ba6.json
PIPEPATH=/mnt/primitives/v2020.1.9/JPL/$PRIM/2019.11.13/pipelines/$PIPELINE
set -x
mkdir -p $D3M_DIR/pipeline-outputs
docker run \
--rm \
-v $D3M_DIR:/mnt \
registry.gitlab.com/datadrivendiscovery/images/arrayfire-cpu:ubuntu-bionic-python36-v2020.1.9 \
python3.6 -m d3m \
runtime \
fit-score \
--problem $DATA/$SET/${SET}_problem/problemDoc.json \
--input $DATA/$SET/TRAIN/dataset_TRAIN/datasetDoc.json \
--test-input $DATA/$SET/TEST/dataset_TEST/datasetDoc.json \
--score-input $DATA/$SET/SCORE/dataset_TEST/datasetDoc.json \
--pipeline $PIPEPATH \
--output /mnt/pipeline-outputs/predictions.csv \
--output-run /mnt/pipeline-outputs/run.yml