-
Notifications
You must be signed in to change notification settings - Fork 27
/
app2.py
40 lines (33 loc) · 1.2 KB
/
app2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from flask import Flask,request, url_for, redirect, render_template, jsonify
from pycaret.regression import *
import pandas as pd
import pickle
import numpy as np
app = Flask(__name__)
model=load_model('final-model')
@app.route('/')
def home():
return render_template("home.html")
@app.route('/predict',methods=['POST'])
def predict():
int_features=[x for x in request.form.values()]
final=np.array(int_features)
col = ['age', 'sex', 'bmi', 'children', 'smoker', 'region']
data_unseen = pd.DataFrame([final], columns = col)
print(int_features)
print(final)
prediction=predict_model(model, data=data_unseen, round = 0)
prediction=int(prediction.Label[0])
return render_template('home.html',pred='Expected Bill will be {}'.format(prediction))
@app.route('/predict_api',methods=['POST'])
def predict_api():
'''
For direct API calls throught request
'''
data = request.get_json(force=True)
data_unseen = pd.DataFrame([data])
prediction = predict_model(model, data=data_unseen)
output = prediction.Label[0]
return jsonify(output)
if __name__ == '__main__':
app.run(host='0.0.0.0', port = 1234, debug = True)