-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
xarray.open_mfdataset()
and .load()
slow or hangs with 4D dataset (76 GB) after upgrading to dask>=2024.12.0
#9926
Comments
xarray.open_mfdataset()
and .load()
slow or hangs using dask>=2024.12.0
and 4D dataset (76 GB)xarray.open_mfdataset()
and .load()
slow or hangs after upgrading to dask>=2024.12.0
and 4D dataset (76 GB)
xarray.open_mfdataset()
and .load()
slow or hangs after upgrading to dask>=2024.12.0
and 4D dataset (76 GB)xarray.open_mfdataset()
and .load()
slow or hangs with 4D dataset (76 GB) after upgrading to dask>=2024.12.0
cc @phofl |
Thanks. I’ll take a look tomorrow.. @tomvothecoder any chance you could try this with an explicit cluster instantiated? I.e. from distributed import Client client = Client() And then your code. |
@phofl Thanks for looking into it. Sure I'll give it a shot. |
Using the explicitly instantiated cluster, the code crashes with New scriptimport timeit
from dask.distributed import Client
import xarray as xr
if __name__ == "__main__":
client = Client()
# 1. Open the "ua" dataset (~76 GB)
filepaths = [
"/lcrc/group/e3sm/diagnostics/observations/Atm/time-series/ERA5/ua_197901_201912.nc"
]
ds = xr.open_mfdataset(filepaths)
# 2. Subset the "ua" dataset (~2 GB)
ds_sub = ds.sel(time=slice("1996-01-15", "1997-01-15", None))
# 3. Load into memory
start_time = timeit.default_timer()
ds_sub.load()
elapsed = timeit.default_timer() - start_time
print(f"Time taken to load ds_xc_sub: {elapsed} seconds") Output2025-01-06 15:14:00,987 - distributed.worker.memory - WARNING - Unmanaged memory use is high. This may indicate a memory leak or the memory may not be released to the OS; see https://distributed.dask.org/en/latest/worker-memory.html#memory-not-released-back-to-the-os for more information. -- Unmanaged memory: 44.08 GiB -- Worker memory limit: 62.95 GiB
2025-01-06 15:14:05,523 - distributed.worker.memory - WARNING - Worker is at 80% memory usage. Pausing worker. Process memory: 50.42 GiB -- Worker memory limit: 62.95 GiB
2025-01-06 15:14:12,128 - distributed.nanny.memory - WARNING - Worker tcp://127.0.0.1:37423 (pid=2260359) exceeded 95% memory budget. Restarting...
2025-01-06 15:14:12,237 - distributed.nanny - WARNING - Restarting worker
2025-01-06 15:14:42,891 - distributed.worker.memory - WARNING - Unmanaged memory use is high. This may indicate a memory leak or the memory may not be released to the OS; see https://distributed.dask.org/en/latest/worker-memory.html#memory-not-released-back-to-the-os for more information. -- Unmanaged memory: 44.11 GiB -- Worker memory limit: 62.95 GiB
2025-01-06 15:14:47,640 - distributed.worker.memory - WARNING - Worker is at 80% memory usage. Pausing worker. Process memory: 50.37 GiB -- Worker memory limit: 62.95 GiB
2025-01-06 15:14:55,728 - distributed.nanny.memory - WARNING - Worker tcp://127.0.0.1:40597 (pid=2260367) exceeded 95% memory budget. Restarting...
2025-01-06 15:14:55,844 - distributed.nanny - WARNING - Restarting worker
2025-01-06 15:15:29,190 - distributed.worker.memory - WARNING - Unmanaged memory use is high. This may indicate a memory leak or the memory may not be released to the OS; see https://distributed.dask.org/en/latest/worker-memory.html#memory-not-released-back-to-the-os for more information. -- Unmanaged memory: 44.12 GiB -- Worker memory limit: 62.95 GiB
2025-01-06 15:15:33,633 - distributed.worker.memory - WARNING - Worker is at 80% memory usage. Pausing worker. Process memory: 50.42 GiB -- Worker memory limit: 62.95 GiB
2025-01-06 15:15:40,227 - distributed.nanny.memory - WARNING - Worker tcp://127.0.0.1:43119 (pid=2260355) exceeded 95% memory budget. Restarting...
2025-01-06 15:15:40,343 - distributed.nanny - WARNING - Restarting worker
2025-01-06 15:16:10,188 - distributed.worker.memory - WARNING - Unmanaged memory use is high. This may indicate a memory leak or the memory may not be released to the OS; see https://distributed.dask.org/en/latest/worker-memory.html#memory-not-released-back-to-the-os for more information. -- Unmanaged memory: 44.18 GiB -- Worker memory limit: 62.95 GiB
2025-01-06 15:16:14,729 - distributed.worker.memory - WARNING - Worker is at 80% memory usage. Pausing worker. Process memory: 50.44 GiB -- Worker memory limit: 62.95 GiB
2025-01-06 15:16:21,228 - distributed.nanny.memory - WARNING - Worker tcp://127.0.0.1:43531 (pid=2260375) exceeded 95% memory budget. Restarting...
2025-01-06 15:16:21,338 - distributed.scheduler - ERROR - Task ('open_dataset-ua-original-getitem-668b8aa617f97e374f7aa417de9048ba', 0, 0, 0, 0) marked as failed because 4 workers died while trying to run it
2025-01-06 15:16:21,344 - distributed.nanny - WARNING - Restarting worker
---------------------------------------------------------------------------
KilledWorker Traceback (most recent call last)
Cell In[1], [line 23](vscode-notebook-cell:?execution_count=1&line=23)
[21](vscode-notebook-cell:?execution_count=1&line=21) # 3. Load into memory
[22](vscode-notebook-cell:?execution_count=1&line=22) start_time = timeit.default_timer()
---> [23](vscode-notebook-cell:?execution_count=1&line=23) ds_sub.load()
[24](vscode-notebook-cell:?execution_count=1&line=24) elapsed = timeit.default_timer() - start_time
[26](vscode-notebook-cell:?execution_count=1&line=26) print(f"Time taken to load ds_xc_sub: {elapsed} seconds")
File /gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/core/dataset.py:899, in Dataset.load(self, **kwargs)
[896](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/core/dataset.py:896) chunkmanager = get_chunked_array_type(*lazy_data.values())
[898](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/core/dataset.py:898) # evaluate all the chunked arrays simultaneously
--> [899](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/core/dataset.py:899) evaluated_data: tuple[np.ndarray[Any, Any], ...] = chunkmanager.compute(
[900](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/core/dataset.py:900) *lazy_data.values(), **kwargs
[901](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/core/dataset.py:901) )
[903](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/core/dataset.py:903) for k, data in zip(lazy_data, evaluated_data, strict=False):
[904](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/core/dataset.py:904) self.variables[k].data = data
File /gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/namedarray/daskmanager.py:85, in DaskManager.compute(self, *data, **kwargs)
[80](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/namedarray/daskmanager.py:80) def compute(
[81](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/namedarray/daskmanager.py:81) self, *data: Any, **kwargs: Any
[82](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/namedarray/daskmanager.py:82) ) -> tuple[np.ndarray[Any, _DType_co], ...]:
[83](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/namedarray/daskmanager.py:83) from dask.array import compute
---> [85](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/xarray/namedarray/daskmanager.py:85) return compute(*data, **kwargs)
File /gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/dask/base.py:660, in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs)
[657](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/dask/base.py:657) postcomputes.append(x.__dask_postcompute__())
[659](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/dask/base.py:659) with shorten_traceback():
--> [660](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/dask/base.py:660) results = schedule(dsk, keys, **kwargs)
[662](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/dask/base.py:662) return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)])
File /gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/distributed/client.py:2427, in Client._gather(self, futures, errors, direct, local_worker)
[2425](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/distributed/client.py:2425) exception = st.exception
[2426](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/distributed/client.py:2426) traceback = st.traceback
-> [2427](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/distributed/client.py:2427) raise exception.with_traceback(traceback)
[2428](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/distributed/client.py:2428) if errors == "skip":
[2429](https://vscode-remote+ssh-002dremote-002bchrysalis.vscode-resource.vscode-cdn.net/gpfs/fs1/home/ac.tvo/mambaforge/envs/xr_2024110_dask_2024120/lib/python3.13/site-packages/distributed/client.py:2429) bad_keys.add(key)
KilledWorker: Attempted to run task ('open_dataset-ua-original-getitem-668b8aa617f97e374f7aa417de9048ba', 0, 0, 0, 0) on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://127.0.0.1:43531. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see https://distributed.dask.org/en/stable/killed.html. |
Thanks! I’ll take a look tomorrow and get back to you |
The new dask release will fix this |
Thank you, @phofl! |
What happened?
Overview
Related to E3SM-Project/e3sm_diags#880 (comment)
I noticed a significant slow down with the following operation after upgrading from
dask=2024.11.2
todask>=2024.12.0
. I decided to post the issue here first, then see if we should escalate it over to thedask
repo. I'm not sure what change might have contributed to this slow down.Operation steps:
open_mfdataset()
.load()
Results:
xarray=2024.11.0, dask=2024.11.2
mamba create -y -n xr_2024110_dask_2024112 -c conda-forge xarray=2024.11.0 dask=2024.11.2 netcdf4 ipykernel
xarray=2024.11.0, dask=2024.12.0
mamba create -y -n xr_2024110_dask_2024120 -c conda-forge xarray=2024.11.0 dask=2024.12.0 netcdf4 ipykernel
What did you expect to happen?
The dataset should load into memory at the same speed between dask versions.
Minimal Complete Verifiable Example
MVCE confirmation
Relevant log output
No response
Anything else we need to know?
This is the self-contained MVCE that does not reproduce the performance slow down for some reason, even though it replicates the dataset I've linked for download.
Environment
INSTALLED VERSIONS
commit: None
python: 3.13.1 | packaged by conda-forge | (main, Dec 5 2024, 21:23:54) [GCC 13.3.0]
python-bits: 64
OS: Linux
OS-release: 5.14.21-150400.24.111_12.0.91-cray_shasta_c
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.14.4
libnetcdf: 4.9.2
xarray: 2024.11.0
pandas: 2.2.3
numpy: 2.2.1
scipy: None
netCDF4: 1.7.2
pydap: None
h5netcdf: None
h5py: None
zarr: None
cftime: 1.6.4
nc_time_axis: None
iris: None
bottleneck: None
dask: 2024.12.0
distributed: 2024.12.0
matplotlib: None
cartopy: None
seaborn: None
numbagg: None
fsspec: 2024.12.0
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: None
pip: 24.3.1
conda: None
pytest: None
mypy: None
IPython: 8.31.0
sphinx: None
The text was updated successfully, but these errors were encountered: