-
Notifications
You must be signed in to change notification settings - Fork 294
/
Copy pathtest_bench.py
146 lines (121 loc) · 4.83 KB
/
test_bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""test_bench.py
Runs hub models in benchmark mode using pytest-benchmark. Run setup separately first.
Usage:
python install.py
pytest test_bench.py
See pytest-benchmark help (pytest test_bench.py -h) for additional options
e.g. --benchmark-autosave
--benchmark-compare
-k <filter expression>
...
"""
import os
import time
import pytest
import torch
from torchbenchmark import _list_model_paths, get_metadata_from_yaml, ModelTask
from torchbenchmark._components._impl.workers import subprocess_worker
from torchbenchmark.util.machine_config import get_machine_state
from torchbenchmark.util.metadata_utils import skip_by_metadata
def pytest_generate_tests(metafunc):
# This is where the list of models to test can be configured
# e.g. by using info in metafunc.config
devices = ["cpu", "cuda"]
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
devices.append("mps")
if metafunc.config.option.cpu_only:
devices = ["cpu"]
if metafunc.config.option.cuda_only:
devices = ["cuda"]
if metafunc.config.option.mps_only:
devices = ["mps"]
if metafunc.cls and metafunc.cls.__name__ == "TestBenchNetwork":
paths = _list_model_paths()
metafunc.parametrize(
"model_path",
paths,
ids=[os.path.basename(path) for path in paths],
scope="class",
)
metafunc.parametrize("device", devices, scope="class")
@pytest.mark.benchmark(
warmup=True,
warmup_iterations=3,
disable_gc=False,
timer=time.perf_counter,
group="hub",
)
class TestBenchNetwork:
def test_train(self, model_path, device, benchmark):
try:
model_name = os.path.basename(model_path)
if skip_by_metadata(
test="train",
device=device,
extra_args=[],
metadata=get_metadata_from_yaml(model_path),
):
raise NotImplementedError("Test skipped by its metadata.")
# TODO: skipping quantized tests for now due to BC-breaking changes for prepare
# api, enable after PyTorch 1.13 release
if "quantized" in model_name:
return
task = ModelTask(model_name)
if not task.model_details.exists:
return # Model is not supported.
task.make_model_instance(test="train", device=device)
benchmark(task.invoke)
benchmark.extra_info["machine_state"] = get_machine_state()
benchmark.extra_info["batch_size"] = task.get_model_attribute("batch_size")
benchmark.extra_info["precision"] = task.get_model_attribute(
"dargs", "precision"
)
benchmark.extra_info["test"] = "train"
except NotImplementedError:
print(f"Test train on {device} is not implemented, skipping...")
def test_eval(self, model_path, device, benchmark, pytestconfig):
try:
model_name = os.path.basename(model_path)
if skip_by_metadata(
test="eval",
device=device,
extra_args=[],
metadata=get_metadata_from_yaml(model_path),
):
raise NotImplementedError("Test skipped by its metadata.")
# TODO: skipping quantized tests for now due to BC-breaking changes for prepare
# api, enable after PyTorch 1.13 release
if "quantized" in model_name:
return
task = ModelTask(model_name)
if not task.model_details.exists:
return # Model is not supported.
task.make_model_instance(test="eval", device=device)
benchmark(task.invoke)
benchmark.extra_info["machine_state"] = get_machine_state()
benchmark.extra_info["batch_size"] = task.get_model_attribute("batch_size")
benchmark.extra_info["precision"] = task.get_model_attribute(
"dargs", "precision"
)
benchmark.extra_info["test"] = "eval"
except NotImplementedError:
print(f"Test eval on {device} is not implemented, skipping...")
@pytest.mark.benchmark(
warmup=True,
warmup_iterations=3,
disable_gc=False,
timer=time.perf_counter,
group="hub",
)
class TestWorker:
"""Benchmark SubprocessWorker to make sure we aren't skewing results."""
def test_worker_noop(self, benchmark):
worker = subprocess_worker.SubprocessWorker()
benchmark(lambda: worker.run("pass"))
def test_worker_store(self, benchmark):
worker = subprocess_worker.SubprocessWorker()
benchmark(lambda: worker.store("x", 1))
def test_worker_load(self, benchmark):
worker = subprocess_worker.SubprocessWorker()
worker.store("x", 1)
benchmark(lambda: worker.load("x"))