-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradar-valid.py
179 lines (151 loc) · 6.02 KB
/
radar-valid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : main.py
@Time : 2020/03/09
@Author : jhhuang96
@Mail : hjh096@126.com
@Version : 1.0
@Description:
'''
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from encoder import Encoder
from decoder import Decoder
from model import ED
from net_params import convlstm_encoder_params, convlstm_decoder_params, convgru_encoder_params, convgru_decoder_params
from data.radar import Radar
import torch
from torch import nn
from torch.optim import lr_scheduler
import torch.optim as optim
import sys
from earlystopping import EarlyStopping
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
from tensorboardX import SummaryWriter
import argparse
import torchvision
#APEX FT16加速
from torch.cuda.amp import autocast as autocast, GradScaler
from utils import create_video
def test(check,model,TIMESTAMP):
'''
main function to run the training
'''
parser = argparse.ArgumentParser()
##可选参数:如python demo.py --family=张 --name=三
parser.add_argument('-clstm',
'--convlstm',
help='use convlstm as base cell',
action='store_true')
parser.add_argument('-cgru',
'--convgru',
help='use convgru as base cell',
action='store_true')
parser.add_argument('--batch_size',
default=4,
type=int,
help='mini-batch size')
parser.add_argument('-lr', default=1e-4, type=float, help='G learning rate')
parser.add_argument('-frames_input',
default=7,
type=int,
help='sum of input frames')
parser.add_argument('-frames_output',
default=7,
type=int,
help='sum of predict frames')
parser.add_argument('-epochs',
default=20, #设置epoch
type=int,
help='sum of epochs')
args = parser.parse_args()
random_seed = 1996
np.random.seed(random_seed)
torch.manual_seed(random_seed)
if torch.cuda.device_count() > 1:
torch.cuda.manual_seed_all(random_seed)
else:
torch.cuda.manual_seed(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
save_dir = './save_model/' + TIMESTAMP
validFolder = Radar(is_train=False,
root='data/',
n_frames_input=args.frames_input,
n_frames_output=args.frames_output,
num_objects=[3])
validLoader = torch.utils.data.DataLoader(validFolder,
batch_size=args.batch_size,
shuffle=False,num_workers=4,pin_memory=True)
print(len(validLoader))
if model=='lstm':
encoder_params = convlstm_encoder_params
decoder_params = convlstm_decoder_params
print("convlstm",flush=True)
elif model=='gru':
encoder_params = convgru_encoder_params
decoder_params = convgru_decoder_params
print('convgru1',flush=True)
else:
# encoder_params = convgru_encoder_params
# decoder_params = convgru_decoder_params
print('default-convlstm',flush=True)
encoder_params = convlstm_encoder_params
decoder_params = convlstm_decoder_params
encoder = Encoder(encoder_params[0], encoder_params[1]).cuda()
decoder = Decoder(decoder_params[0], decoder_params[1]).cuda()
net = ED(encoder, decoder)
run_dir = './runs/' + TIMESTAMP
if not os.path.isdir(run_dir):
os.makedirs(run_dir)
tb = SummaryWriter(run_dir)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(device)
if torch.cuda.device_count() > 1:
net = nn.DataParallel(net)
net.to(device)
#check point断点续传
if os.path.exists(os.path.join(save_dir, check)):
# load existing model
print('==> loading specific epoch model')
model_info = torch.load(os.path.join(save_dir, check))
net.load_state_dict(model_info['state_dict'])
optimizer = torch.optim.Adam(net.parameters())
optimizer.load_state_dict(model_info['optimizer'])
cur_epoch = model_info['epoch'] + 1
# else:
# if not os.path.isdir(save_dir):
# os.makedirs(save_dir)
# cur_epoch = 0
lossfunction = nn.MSELoss().cuda()
optimizer = optim.Adam(net.parameters(), lr=args.lr)
pla_lr_scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,
factor=0.5,
patience=4,
verbose=True) #half the learning rate every 4 epoch without improving. No print message.
with torch.no_grad():
net.eval()
t = tqdm(validLoader, leave=False, total=len(validLoader))
print("Test=====================",end="")
for i, (idx, targetVar, inputVar, _, _) in enumerate(t):
inputs = inputVar.to(device)
label = targetVar.to(device)
with autocast():
pred = net(inputs)
loss = lossfunction(pred, label)
if i % 50 == 0:
image=create_video(inputs,pred,label)
tb.add_image('Try'+str(i), image, 0)
tb.close()
if i == 151:
break
torch.cuda.empty_cache()
if __name__ == "__main__":
check='checkpoint_20_0.002446.pth'+".tar"
model='gru'
TIMESTAMP = "2021-03-28"
test(check,model,TIMESTAMP)
#tensorboard --logdir='D:\download\ConvLSTMpytorch\Radar\runs'